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Executive Summary 
 

The AIDA: Adaptive, Intelligent and Distributed Assurance Platform project main goal is the 

conception of RAID’s platform new version having parts of the pipeline moved to the edge of the 

system. Now, the platform is built using physically co-located servers, either on premises or in the 

cloud. AIDA intends to provide adaptable and configurable data collection and monitoring while 

preserving real-time, security and dependability guarantees. Current market demand requires RAID 

to become more effective in scaling to unprecedented levels while assuring data privacy and 

confidentiality of the data processed across the different administrative domains and owners. This 

poses significant and interesting research and development challenges in security of data and 

infrastructure. 

Pilot projects and trials are a good way to reduce risk on projects. The pilot project is an initial small-

scale implementation that is used to prove the viability of a project idea. This could involve either the 

exploration of a novel new approach or idea or the application of a standard approach recommended 

by outside parties but which is new to the organization. An example of this would be the standard 

implementation approach for a new off-the-shelf package. 

The pilot project enables an organization to manage the risk of a new idea and identify any 

deficiencies before substantial resources are committed. The pilot can confirm viability and 

scalability and enable proposed components and procedures to be tested. It will confirm the 

appropriateness and safety of the tools proposed and security of the platform. It also enables the 

benefits to be tested and a more reliable investment appraisal to be created for the main project.  
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1. Introduction 
 

RAID is Mobileum’s platform that handles the entire risk management lifecycle of enterprises. It 

comprises a very fluid pipeline, which covers several steps as data collection, monitoring, notification, 

discovery and actuation, to provide several services. Companies over the world are served by RAID to 

capture revenue for all services rendered (revenue assurance), for business assurance and fraud 

management, in an end-to-end real-time manner. 

  

The Adaptive, Intelligent and Distributed Assurance Platform (AIDA) project has the main goal of 

conceiving a new version of the current RAID platform where some of the pipeline phases can be 

dynamically moved to the edges of the system. Currently, the platform is fully deployed in physically 

co-located servers, either on premises or in the cloud. AIDA aims to provide highly configurable data 

collection and monitoring while preserving real-time, security and dependability guarantees, with 

ability to run in diverse hardware. The market pressure requires RAID to become effective in scaling 

to unprecedented levels while assuring data privacy and confidentiality of the data processed across 

the different administrative domains and owners. This poses significant and interesting research and 

development challenges in the area of security of data and infrastructure which need to be addressed. 

  

AIDA faces the identified challenges through several perspectives that compose the activities within 

this project. Namely, focusing on distribution of the platform to encompass the cloud and the edge, 

which allows the platform to take advantage of 5G networks to have more effective scaling; 

utilization of distributed and federated machine learning to enable model training on distributed data 

and to learn with both behavior patterns and context evolution, leveraging this process for risk 

management purposes; and also assure security of the platform, through intrusion detection and 

tolerance to assure the continuity of service, and data privacy and confidentiality, which are 

fundamental concerns in the design of the platform, as it should be able to work with anonymized 

data, as well as provide secure data exchange between the different processing elements in distinct 

environments. 

  

This document serves the purpose of defining the baseline for the implementation of a pilot project. 

Participants from the remaining activities will be able to understand what and how the pilot should 

be implemented. Defines the uses cases needed for pilot proposes and what frameworks can be used 

to execute the pilot correctly. Also defines what tests are needed to be executed to achieve a good 

quality assurance metric. 
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● 1.1 Target Audience 
 

This document is intended for internal use.  

Participants from the remaining activities will be able to understand what and how the pilot should 

be implemented.  

 

● 1.2 Pilot Definition Overview 
 

To assure a complete pilot for the project, this document covers an approach that covers the relevant 

topics of the platform. Platform components cannot be devised in an isolated manner as to focus on 

specific parts of the system but rather as an overall view and definition according to multiple 

perspectives of the system. 
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● 1.3 Document Structure 
 

The rest of this document is structured in the following three main sections. 

First section is dedicated to describing the main components of the pilot, the solution architecture, 

Machine learning framework that will be used and how it can be used in order to accomplish the 

results, the list of uses cases that can be addresses and the security measures applied on data and on 

the architecture.  

The next section describes the implementation plan and the goals achieved through time. 

The last section defines the validations that are required to assure that the pilot has the quality 

assurance acceptance. 
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2. Pilot Definition 
 

AIDA will be tested through a pilot that aims to join all the different tasks coordinated by different 

consortium partners as specified in activity one. 5G decreases network latency by 10 times when 

compared to 5G, requiring low latency infrastructure distributed through services that need to be  in 

the edge of the network, with limited  and scalable resources, and others with available in the cloud. 

This requires the scope of activity two, a distributed infrastructure from cloud to edge, which can 

orchestrate and monitor all activity between the two different infrastructures and the corresponding 

data lakes. 

Since services are distributed between different edges and clouds, and in some cases data needs to 

comply with law requirements or other constraints which imply limited to none data being 

transmitted outside the edge, Federated Machine Learning is required in order to join the multiple 

fraud detection patterns identified in each edge. Activity number three aims to design a framework 

and trustworthy, self-explainable and privacy preserving anomaly detection algorithms, enhancing 

federated distributed and Federated Machine Learning. 

A key important aspect to ensure the availability and security of the Aida platform is provided by 

activity four, ensure, a secure communication layer between all network elements, while 

safeguarding the privacy of the data being processed or stored. This requires security monitoring and 

actuation in case of intrusions or any other attempts to disrupt the service of the platform or put the 

data security or privacy of risk. 

The pilot definition provides the integration of all these components. The platform will run the 

algorithms developed in the context of activity three, ensuring that all remain components are 

successfully integrated, that is, evaluation of the precision of the anomaly detection algorithms, as 

well as the usability, performance and security of the system. 

 

● 2.1 Architecture Cloud to Edge 
 

To initiate the design of the security strategy, the platform was first analyzed with regard to the scope 

and concerns that should be addressed by the security and privacy strategy, with the architecture 

being examined to identify relevant actors and stakeholders as well as possible malicious agents that 

can endanger the security and privacy of the platform and its data. Figure 1 depicts the general 

architecture of the AIDA platform. 
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Figure 1 - AIDA architecture overview 

 

The AIDA platform describes a distributed architecture with cloud and edge environments for a more 

global and local processing, respectively. It is composed of three vertical components that motivate 

environments from centralized cloud towards the edge nodes: comprising the orchestration of the 

distributed edge nodes for better scalability; monitoring/adaptation of the distributed platform to 

assure that data is collected for problem identification and for the adaptation of the platform; and 

intrusion detection and tolerance so that AIDA is resilient to intrusion by detecting and tolerating its 

occurrence. To complement these components, there are two components that ease the interaction 

between cloud and the edge to assure that communication channels among services are secured as 

well as the privacy and security of the data store is also maintained. In more detail, Figure 2.2 depicts 

the general architecture of AIDA, with the five components previously mentioned and the cloud and 

edge parts detailed. 

  

The Cloud side of the platform is composed of the main components of the RAID platform divided 

into the Common, Processing, Data and Presentation areas of the platform. In general, this 

architecture provides clear distinction between the layers across the cloud deployment and actuation 

area of each service. The Edge side of the platform is composed of lightweight services delegated to 

the edge of the network, based on containerized applications deployed to provide real-time, low 

latency service to the customers while assuring higher and more effective scalability capacity. 
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Figure 2 - AIDA edge and cloud components distribution overview. 

Through these components, the AIDA platform will assure that users are served with an integrated 

low code platform that allows them to construct several objects (e.g., data flows, case management 

or views) without having to code. For this, the platform exposes three main components to the 

exterior, namely the presentation layer, the web services and the Extract, Transform and Load (ETL) 

layer. The presentation layer serves the users of the platform with user-friendly interfaces, following 

the Rich Internet Applications (RIA) architecture with state-of-the-art technologies, for the creation, 

management, and deletion of the objects mentioned above. The users can navigate through the 

pages available to perform the intended operations. The web services are available to the clients that 

feed the system with data, communicating through REST and using the Tomcat server as support. 

With regard to the ETL layer is where the processing of the information collected is conducted which 

can also partially occur at the edge of the network, as a consequence this layer is also exposed to 

external agents that can feed the information to get it processed. 

In light of this architecture, we distinguish three main sets of stakeholders that are relevant for the 

analysis. 

 

● Mobileum: the company that provides the platform being developed, it is responsible for the 

management of the services and orchestration of the components, assuring the release of 

features, maintaining the availability and correct configuration of the application. As a part 

of this actor, we highlight two important roles: the Developer, responsible for creating 

objects in the RAID platform; and the Analyst, which uses the objects created to perform 

intended operations. 
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● Service User Entity: the entity that takes advantage of the service provided by the platform, 

it relies on it to assure their communications and operations are monitored and secured 

through the operation of RAID, detection for instance possible fraud committed against the 

Service User Entity. This can be a Telecom Operator or a company that operates in the 

context of autonomous driving or Industry 4.0. 

● Data Subjects: the subscribers or users of the service of the Service User Entity, whose data 

and communications will be monitored and analyzed through the RAID’s platform for the 

management of operations and detection of possible malicious behavior. These can be the 

subscribers of a Telecom Operator, the users of autonomous vehicles or plant operators in 

the context of Industry 4.0. 

 

This was investigated in Task 2.1 where was described in deliverables D2.1 and D2.2. Also Activity 4 

has raised complementing aspects to the architecture that impacts in the architecture that are 

described in deliverable D4.1, D4.2 and D4.4. 

 

This section describes the architecture of the proposed solution presented in this deliverable. Section 

2.1.1 presents the architecture of the Machine Learning applications. Next, section 2.1.2 describes the 

implementation in several Kubernetes Clusters with use of a Message Broker and Publisher and 

Subscribe paradigm. Finally, section 2.1.3 presents the sequence diagrams of the Machine Learning 

applications and the overall scope of the distributed processes. 

 

● 2.1.1 Adopted Technologies 
 

The applications development was mainly based on three technologies – TensorFlow, Flask and 

Docker – as well as the programming language Python. TensorFlow is one of the most widely used 

Machine Learning frameworks, focusing on the implementation of Deep Learning algorithms. The 

choice of TensorFlow was mainly due to the existence of lite models with TensorFlow Lite. This 

module was specifically designed for devices with limited resources such as Edge devices or 

embedded systems. Moreover, TensorFlow also TensorFlow Federated, a module focused on 

Machine Learning for decentralized data. TensorFlow Federated was developed for Federated 

Learning scenarios where a centralized ML model is shared with multiple clients. 

 

Flask is a Python package focused on web application development based on RESTful APIs. It is a 

relatively simple framework yet still very powerful given its support to external sources such as 

databases. It is one of the most widely used libraries for creating APIs given its detailed 

documentation and support of different authentication methods. 

 

Docker is an open-source platform that allows containerization of applications. It allows developers 

to encapsulate applications in containers: executable components that merge source code with 

operating system libraries and dependencies and allows to run the code in any given environment. 

This leads to a simpler delivery process, sharing and distribution of applications and it has become 

widely popular in software organizations, especially in a multiCloud environment. The choice of 
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Docker for this project is based on the ease of automation and sharing of the applications created, 

allowing them to be seamlessly executed and replicated in any given infrastructure. 

 

The Python programming language was used to support the development of the applications, mainly 

for the development of the Machine Learning (TensorFlow) features and REST APIs (Flask). The 

choice of this language was based on the fact that is a common denominator to the various libraries 

used in this project and it has a highly active community.  

 

● 2.1.2 Machine Learning Architecture 
 

This section details the Machine Learning architecture developed in the context of this project. The 

proposed architecture attempts to address the main challenges of the project, such as working on 

decentralized data and knowledge transfer of local models. This is described in detail next, where the 

focus is primarily on the global architecture and inner functioning of each Edge node and a central 

node (designated centralized location). 

  

On a typical Mobile Edge Computing (MEC) scenario the set of Edge nodes do not access the same 

data set (i.e., each Edge node typically has access only to a local data repository). Two main 

challenges are presented by this architecture that are addressed by the proposed solution. Firstly, 

each node may not possess enough computational resources in order to train Machine Learning 

models (especially if using Deep Learning algorithms) or even to perform inference (predictions). 

Secondly, given that each Edge node is associated to a local repository, there is no data 

centralization, as each node might have to use distinct data to train models. Figure 3 depicts the 

proposed architecture for meeting these Machine Learning goals: 

  

 
Figure 3 - Proposed architecture to address the identified Machine Learning challenges. 

 

● 2.1.1.1Edge Nodes 
 

In this architecture, the flow in each Edge node is divided in two main phases: 
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 Predictions: At any time there is always a common ML model that is shared across all Edge 

nodes (model copies). The model is in the format TensorFlow Lite, a way to decrease both the 

prediction time and the disk space required. This model performs predictions whenever 

necessary (in batch or streaming/mini batch). 

  

 
Figure 4 - Edge node internal workflow (predictions) 

 

 Training: The training phase consists in the creation of a new model in each Edge node. Each 

node uses a local set of data to use for training (the local data can be used for more than one 

Edge node, depending on the case). The training uses the base architecture of the current 

shared model. 
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Figure 5 - Edge node internal workflow (local training) 

 

● 2.1.1.2 Centralized Location 
  

The architecture also contains a centralized system (Cloud) that has the following phases: 

 Aggregation: The aggregation phase is responsible for updating the shared model. Once 

each Edge node trains a model using different data (decentralized), the purpose of this step 

is to aggregate all the generated models. The aggregation method I based upon concepts of 

Federated Learning. It should be noted that not all ML models must be used for the final 

aggregated model. There can be filters based on predictive and performance metrics (e.g. 

standard error) so that only the best models are used. 

  

 
Figure 6 - Model aggregation on the centralized location 

 

 Distribution: This phase occurs when there is a new updated model that needs to be shared 

with all Edge nodes. It consists of sending copies of the new model to each Edge node, 
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replacing the previous model. The new model will then be used for new predictions in each 

Edge node. 

  

 
Figure 7 - Model distribution 

 

● 2.1.2 Implementation of the Machine Learning 

Architecture 
 

The Machine Learning architecture presented on section 2.1.1 was implemented on a MEC based on 

Intel® Smart Edge Open (a framework for managing the 5G components - www.openness.org) 

clusters, instantiated with Kubedge. There are several Edge clusters and one Cloud (centralized) 

cluster and communication between them is ensured through a message broker. 

  

The aggregation application is located on the Cloud and uses the broker to send initial models and 

the aggregates for the prediction applications on the Edges. 

  

The training applications, located on the Edges, send the new models originated from training to be 

aggregated on the Cloud. 

  

● 2.1.2.1 Technological Architecture of the Solution 
  

 

Figure 8 depicts the technological architecture implemented: 

  

http://www.openness.org/
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Figure 8 - Technological Architecture 

 

On the Edges there are two types of applications: 

 Training application, responsible for ML models trained with labeled records; 

 Prediction application, responsible for labeling a new set of non-classified records as fraud or 

not fraud. 

  

On the Cloud there is a ML application that performs aggregation on the Edge models and creates 

new prediction models. 

The solution uses the paradigm Publisher and Subscribe to propagate the ML models through various 

applications. Both at the Edge and at the Cloud there are applications responsible for publication and 

subscription of the models. For ease of implementation, it was decided to use a centralized Message 

Broker service on the Cloud cluster. 

The workflow to be implemented is the following: 

 First, the Cloud generates an initial model, trained with an existing labeled dataset; 

 This initial model is propagated to all the Edges used for prediction; 

 Each Edge trains new models as it receives new records and classifications that are then 

regularly sent to the Cloud for aggregation. These models are not yet used for prediction; 

 Regularly the federated application aggregated the new models received from the Edges and 

generates new prediction models that ate propagated to the Edges; 
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 The Edges use the models obtained from the federated application to make predictions on 

whether a call is fraud or not (replacing the previous model). All Edges use a similar model to 

make predictions that ideally aggregates all the knowledge acquired in all the Edges. 

  

● 2.1.2.2 Publish and Subscribe Paradigm 
  

The Publish and Subscribe is a message communication standard that allows that heterogeneous and 

distributed services communicate asynchronously. This model allows services to publish and react to 

events propagated by a Message Broker. 

  

On the Publish and Subscribe there are three types of services: 

 Event managers, composed by Message Broker, responsible for filtering, processing and 

rotating events; 

 Event producers, that publish events on the managers; 

 Event consumers, that subscribe event types and receive them from managers; 

  

There are several ways to classify events, the most common being the term topic. An event is 

published on a topic and propagated to all that topic’s subscribers. 

  

The Publish and Subscribe has some characteristics of special interest on the distributed architecture 

of the proposed solution: 

 Loose Coupling – the various services of the system (training and federation applications) do 

not know each other. All communication is performed by the Message Broker, allowing the 

addition and removal of Edges to the system with minimum configuration costs; 

 Asynchronous eventing – Notifications are propagated asynchronously. The events are 

published at the moment they occur, but their digestion and processing does not have to 

occur immediately without blocks. For example, when an Edge publishes a new model, it 

does not have to wait for an answer from the Cloud. Its only concern is if the event was 

published; 

 Fault Tolerance – The two previous points assure the system is resilient and allow, as an 

example, that parts of the system fail temporarily, be they communication channels or 

services, without affecting the service as a whole. 

 

● 2.2 ML Framework 
 

TensorFlow Federated is a module focused on Machine Learning models trained on decentralized 

data. The module was developed with a focus on Federated Learning scenarios, where a centralized 

ML model is shared amongst multiple clients. TensorFlow Federated currently has two main APIs: 

Federated Learning, which allows users to apply training and federated predictions with TensorFlow's 

base models; and Federated Core, focused on users with more experience and that allows the 

instantiation of new algorithms or implementations of Federated Learning approaches. 

One of the classic applications of Federated Learning is related to the learning of smart keyboards 

(e.g., Gboard from Google), done on smartphones. The next figure exemplifies the process: 
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  Figure 9 - Example of a Federated Machine learning application 

 

Using the example of smart keyboards, each mobile phone trains a model with local data (what its 

user writes), represented by the letter A. Using learning from several mobile phones, there is an 

aggregation phase (B). The result is an improved model (C), capable of detecting new words that start 

to be used by several users or capable of improving suggestions. 

 

The framework needs to be prepared for Federated Learning scenarios similar to Figure X, using 

various interfaces. One interface is related to Machine Learning models and focuses on serialization 

and aggregation operations. Serialization allows you to serialize any model into a graph, which is 

useful when not all devices or edge nodes support running Python environments. Aggregation allows 

you to join individual models and can be done locally (several models on the same client that use 

different batches of data) or in a federated way (aggregation of models from different clients). The 

second interface is called Federated Computation Builders and helps in the evaluation of models. A 

third and final interface can provide datasets to be used in simulations or experiments with the API. 

 

This was investigated in Activity 3 where will be described in deliverables D3.1 and D3.2. 

 

○ 2.2.1 Description 
 

One of the requirements of the Machine Learning architecture is the existence of an initial model that 

can be propagated to the Edges. Moreover, due to the MEC characteristics of the architecture it was 

important to have a model with a simple architecture in order to facilitate the deployment phase. In 

order to answer this criterion a simple 4-layer Neural Network was developed with the use of Keras 

and TensorFlow. 

 

○ 2.2.2 Training Phase 
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For the Training phase, binary_crossentropy was used for loss function, adam was used for optimizer 

and the metric Area Under the Curve (AUC). The model can be trained for a maximum of 1000 epochs, 

with an early stopping of 3 rounds. 

 

The current version of the Neural Network is depicted in Figure 10Figure 10 along with the 

corresponding code in. 

 

 
Figure 10 - Neural Network Architecture 

 

 
Figure 11. Neural Network code 

 

As it is possible to observe in Figure 10 and Error! Reference source not found., the developed Neural 

Network was built with an input layer with 14 neurons (the number of attributes in the dataset after 

the data preparation stage), 1 output layer with only 1 neuron (corresponding to the binary 

classification “fraud” or “not fraud”) and 3 intermediate layers. The intermediate layers consist of, 

respectively, 32, 64 and 14 neurons. 
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○ 2.2.3 Federated Aggregation 
 

One of the main concerns of federated learning is the way the various models trained with local 

(decentralized) data are unified together taking into consideration the condition that there is no 

sharing of data between clients. There have been many different approaches on this topic proposed 

in recent years. We selected the Federated Averaging (FedAvg) algorithm for the context of this 

project (Arcas, 2017). 

 

The FedAvg method was proposed in 2017 and it is still currently one of the most widely used in the 

context of Federated Learning given its simplicity, ease of implementation and independence from 

the framework used (even though it is mainly designed for Deep learning algorithms). This method 

consists in the application of the Stochastic Gradient Descent (SGD) method locally (i.e. in each 

client) combined with a shared model to generate local models that are then aggregated in a server 

(typically the Cloud or centralized location identified in the architecture depicted in Figure 1). 

 

FedAvg is built upon the existence of a shared model that is distributed for several clients (Edge nodes 

in the scope of this project). From the moment the local client has a copy of the shared model, SGD 

can be used to optimize the initial model with new data from that client. Generating a new local 

model requires the shared model and the local data as input sources. During the local training each 

client applies a Gradient Descent step to the existing model using the local data. This results in a new, 

improved model. Given the low computation costs of SGD each client is allowed to perform this step 

iteratively during each local training run. 

 

Next, a second phase aggregates the results of all local models generating a new unique model. This 

stage assumes that a server has access to all local models regardless of the number of models used. 

To perform the aggregation we use a pondered averaged of all the weights of each local model. The 

FedAvg expression for the aggregation phase is the following: 

 

 
Figure 12. FedAvg expression for the aggregation phase 

 

In this formula, wt+1 represents the new aggregated model, K represents each of the clients of the 

aggregation phase, nk is the number of records used for training of model k, n is the number of total 

records (sum from all models) and wk
t+1 represents the local model of client k. 

 

● 2.3 Requirements 
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The Adaptive, Intelligent and Distributed Assurance Platform, AIDA, project aims to deliver an end-

to-end 5G-ready fraud management platform that is based on the latest advances in machine 

learning, edge computing, and hybrid cloud architectures to protect networks for 5G and beyond. 

AIDA address 5G’s scalability and privacy challenges by enhancing RAID’s engines and expanding its 

automation capabilities. In particular, the project will be focusing on the following goals: 

 Leverage edge computing and 5G - to distribute RAID platform components to delegate 

processing to the edge or use central servers, according to the nature of the computation and 

the type and localization of monitoring and reference data. 

 Explore emergent federated machine learning techniques - to learn from local data and push 

incremental model updates to coordinator nodes that maintain global models based on the 

contribution of edge nodes and other relevant data sources. 

 Test resilience to intrusion or tampering - by requiring the research and application of 

intrusion detection techniques at multiple levels of the architecture, with the goal of enabling 

system-wide intrusion tolerance. 

 Protect data privacy and confidentiality – by maintaining the confidentiality of the 

operational data being monitored, analyzed, and protecting the privacy of the entities to 

whom the data refers. 

With this requirements an overview is provided of the 5G Architecture which Raid will interface 

both at the core and radio access network as well as the infrastructure and technologies that Raid 

will use to detect 5G fraud.  

 

This section describes a brief review of state-of-the-art Federated Learning frameworks and their 

limitations regarding use cases potentially involving FL in AIDA.  

 

Federated Learning (FL) is a distributed approach in which the learning of models is pushed towards 

the network nodes that collect and hold the data. These edge nodes learn directly from the data they 

collect or hold. Then, they send model updates to a central node (e.g., a server) that orchestrates 

updates from several participant nodes and shares a global model in the network.  

 

This is an inherently incremental and distributed process, and therefore it is well suited to learn from 

distributed data and centralized data. The paradigm is to transfer models and model updates instead 

of the data. This significantly reduces data transfer from the edge to the central systems, lowering 

latency, reducing storage and network bandwidth requirements, improving the overall quality of 

service while at the same time providing an additional layer of privacy since data never leaves the 

origin. The edge nodes receive a shared model from the central node. They learn model updates from 

the data collected locally and send them back to the central node that orchestrates updates from all 

the edge nodes. 

 

The highly distributed architecture and network-intensive operation of the RAID platform naturally 

demands for a distributed paradigm for all types of operation. This obviously includes machine 

learning algorithms. FL is a natural and even obvious approach to the problem of learning from 

network traffic data. 

Three use cases have been discussed that will eventually involve the need FL: 
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● Service Disruption Detection 

For this use case there is the need for developing a service disruption detection that can work as a 

micro service and is able to monitor the overall health of both Platform and OTT Service ability to 

provide the service according with the contracted terms. 

 

● Platform Service Abuse 

Development of a service abuse detection at the platform level, that can work as a micro service and 

is able to monitor the monitor subscriber service connection and usage patterns, together with the 

service contract data, in order to detect situations of abnormal usage that don’t comply with the 

contracted service terms or have the risk to have the CSP incurring in financial or reputational losses. 

If such a case is detected, relevant data for the analysis should be collected and an alarm generated. 

Automated actions may be executed for certain scenarios. 

 

● OTT Service Abuse 

Development of an OTT service abuse detection, at the platform level, that can make use of an 

wealthier set of data not at the reach of the OTT Service provider, and that can work as a micro service 

in order to monitor the connections to the OTT service and usage patterns, together with the service 

contract data, and spot situations of abnormal service usage that don’t comply with the contracted 

service terms or have the risk to generate losses to either the CSP or the OTT Service provider. If such 

a case is detected, relevant data for the analysis should be collected and an alarm generated. 

Automated actions may be executed for certain scenarios. 

 

From the machine learning perspective there was the need to focus on a specific instantiation of each 

use case. The following have been adopted 

Use case 1: DDoS early detection 

Use case 2: Phone fraud detection 

Use case 3: TV piracy service detection 

 

Each of these have particular requirements at the algorithmic level, however, for the purpose of 

framework development, they share common requirements 

 Ability to perform distributed learning  

 Ability to learn online from complex data (networks, high-speed streams) in real time 

 Ability to perform inference with low latency 

 Data privacy guarantees 

 

● 2.3.1 Framework Requirements 

 
The adequacy of FL frameworks has been studied under the following perspectives: 

 License: the usage and distribution license must be open-source and business-friendly 

 Ability to operate in a distributed networked environment: RAID’s architecture is complex, 

based on a large number of heterogeneous nodes orchestrated in a Kubernetes environment. 

It is important that the framework has high modularity, portability, and a lightweight 
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footprint given eventual computational limitations of nodes. It is also required that the 

framework includes network connectivity using standard network protocols. 

 Ability to operate in the laboratory: although the final production environment is rather 

complex, the framework is also required to operate in very simple setups (even single 

machines), typically used in laboratorial settings for offline algorithm development and 

validation. 

 Package maturity: although there is a very large number of publicly-available FL frameworks, 

most are very recent and hold potential risks in adoption due to uncertainty of continuity. 

 Ease of implementation and extensibility: given that ML researchers are not typically 

proficient with the inner-workings of large distributed systems, it is important that the 

framework provides clear and easy-to-use abstractions of this eventual complexity. 

 Quality of documentation, for obvious reasons. 

 

From the above analysis, the decision was to adopt Flower[1], an open-source python-based FL 

framework.  

 

Flower is a framework for building federated learning systems. It can be used with any machine 

learning framework, for example, PyTorch and TensorFlow. Flower’s API is mainly composed by a 

client and a server. The Flower server is the communication channel between two or more Flower 

clients that compose the FL environment. One round of the FL process, which is repeated for multiple 

rounds, goes as follows. The server sends model parameters to the clients. The clients run the training 

and update the parameters. The updated parameters are sent back to the server which averages all 

received parameter updates.  

 

It is licensed under the Apache 2.0 license, has been developed and maintained for 2 years and is 

currently very active (7 releases, over 25 developers, more than 150 forks). It follows a client-server 

architecture using standard TCP/IP, it is well documented and it is extremely simple to install, extend 

and operate in simple systems, while still being sufficiently flexible to be deployed at scale on the 

cloud using state-of-the-art system orchestration environments based on Kubernetes. 

 

● 2.3.1.1 Federated learning architecture 

 
Following the above considerations, AIDA’s consortium partners have agreed on a high-level FL 

architecture. This architecture is illustrated in Figure 11. 
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Figure 11 - High-level Federated Learning architecture 

As expected in a FL framework, the training process involves a central node and multiple edge nodes. 

Task 3.1 of AIDA focuses on the development of a framework capable of coordinating this process 

between central and edge nodes. Since several state-of-the-art frameworks already provide the 

essential mechanisms for this coordination, the biggest challenge in AIDA is concentrated on the 

inner-workings of edge nodes, in particular efficient access to streaming data, as well as local and 

remote databases. Regarding streaming data, a natural intermediary between raw traffic data and 

the learning algorithms at the edge is Kafka, a popular data stream management platform, capable 

of some online pre-processing. Besides Kafka, it is expected that the framework has access to other 

data sources available on the network. 

 

● 2.4 Platform communication 
 

By design, each micro service needs to be deployed individually, describing the interfaces and 

dependencies, conforming to the Representational State Transfer (REST) software architectural 

style. A RESTful web service, exposing a RESTful API that provides its peers with a constant endpoint 

for the service being provided. 

The application that are executed on the edges need to have at least these five API’s groups 

implemented: 

 Case API 

 Machine Learning Update API 

 Machine Learning Test API 

 Edge Monitoring API 

 Edge Performance API 

 

Case API Description: Cases are opened in the cloud by each Edge Location, implying the 

transmission of details which will allow the analyst to review and classify it. Key Areas: -Data at rest; 

Data in transfer; Anonymization of sensible data. 
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Machine Learning Update Description: Each edge location will have its own model trained with local 

data, this federated model will be shared with the cloud whenever it is updated. The cloud will 

produce a new model with the combined. 

 

Machine Learning Test Description: Monitor the performance of the ML model and benchmark with 

previous versions identifying performance issues. 

 

Edge Monitoring Description: Monitor the health of the Edge Location resources insurance that it’s 

live and performing under expected the thresholds, allowing auto or remote configurations to be 

deployed, including reference data. 

 

Edge Performance Description: Each Edge Location needs to be monitored in terms of business 

performance, e.g.: there are no data feeds to be processed, or they have wrong formats, how many 

cases per minutes are opened, closed, high variations on trends or silence systems even though no 

errors being reported. 

 

For further analysis, this was investigated in Activity 1 and described in deliverable D1.2 where was 

described the platform architecture and APIs required to report a new fraudster, update a fraud 

model or for monitoring and performance. 

 

● 2.5 Security 
 

The strategy proposed operates at multiple levels of the system. For privacy there are mechanisms 

that intend to assure that information is processed and stored in a manner that reduces probability 

of private information leaks and minimizes the risk of data re-identification. The mechanisms 

proposed address privacy challenges through trusted execution environments that allow the 

information to be processed by machine learning algorithms in a privacy-preserving distributed 

manner. Another important aspect is the development of a framework that allows to test different 

configurations and assess mechanisms according to privacy and utility levels of data. These 

mechanisms operate at the cloud and edge levels. 
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Figure 12 - AIDA security and privacy design overview. 

For security purposes there are three main mechanisms applied to the AIDA platform: 

At the cloud and the edge there are mechanisms for intrusion detection and tolerance that aim to 
prepare the system to detect security breaches and direct security countermeasures to reduce and 
mitigate the possible damage caused to the affected components. 

The intrusion detection mechanisms are directed to microservice architectures that are used at the 
cloud and the edge, collecting host information on each service and building profiles to detect 
deviations from the normal execution of the system. For intrusion tolerance purposes, the system will 
become capable of maintaining operation regardless of security breaches. 

To assure that cloud and edge levels can communicate securely, the security strategy proposes the 
use of encryption mechanisms that assure integrity, confidentiality, and privacy between the diverse 
components at the edge and cloud. Further, AIDA will also be supporting scalable authentication and 
authorization mechanisms, relying on OpenID Connect solutions. 

To integrate all the components of the security strategy, AIDA will have available a monitoring and 

adaptation module. This module will be responsible for collecting data about the platform and 

perform modifications in its configurations or mechanisms used to accomplish the goals of the 

platform. This module will be deployed together with the AIDA orchestration and management 

component that orchestrates the different levels of the platform. 

 

a) Secure Communications 

Integrity, confidentiality, and privacy in AIDA is supported using Transport Layer Security (TLS), to 

encrypt all the communication between the components of the AIDA architecture. The services, 
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exposing functionalities through HTTP based APIs can encrypt the communications relying on 

HTTPS, which heavily relies on TLS. 

The secure communications can rely on Service Mesh architectures, which manage the required 

elements (certificates) to support mutual TLS in a transparent fashion. The service mesh architecture 

relies on proxies (often called ‘sidecar proxies’), which are deployed in front of micro services and are 

responsible to provide infrastructure services (e.g., load balancing, ingress controller, egress 

controller) for applications based on micro services. 

 

b) Authentication and Authorization  

OpenID Connect is used as the solution for authentication and authorization in AIDA, with the 

advantage of supporting federated scenarios as illustrated in Figure 13. The envisioned scenario 

considers a user with multiple devices hosting diverse applications, which are identified as User 

Agents. The user needs to have the means to express its levels of trustworthiness in the diverse 

devices and respective applications. As a matter of example, a user may tend to trust more on the 

iPhone device given the full control of Apple in terms of hardware and software, in comparison to a 

Tablet running Android. In addition, Google Chrome and Safari user agents can be installed in the 

iPhone, with the tendency for the user to trust more on the Safari user agent. This leads to the need 

of identifying devices and applications in a unique and compatible fashion with Federated Identity 

Management (FIM) solutions. 

 
Figure 13 - Example of use case for authentication and authorization. 

OpenID Connect (OIDC) is a feasible FIM solution, relying on the OAuth 2.0 protocol that is widely 

used for dealing with the authorization process to access resources (e.g., application APIs requiring 

access to information fields of the user, like email address). 

 

The OIDC core architecture considers, mainly three entities: the authorisation server, also known as 

OpenID Provider (OP) and is responsible to authenticate an end user and to obtain the end user 

consent/authorization; the client, also known as Relying Part (RP), which is responsible to make the 

interface with the end user to manage the required information for authentication; the user agent, 

commonly in a browser, interacts with the client to provide the required information, like the user 

consent. 

OIDC introduces the concept of scopes to request access to claims. For instance, the RP may ask for 

some user attributes (e.g., scope=profile name family_name), which the user can consent to. Each 
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scope returns a collection of these attributes, referred to as claims (scope=email address phone). To 

identify an OpenID Connect flow, the scope of openid is required (e.g., scope=openid). 

 

OIDC adds the ID Token extension to OAuth 2.0, which is a security token with several information 

fields - claims to authenticate an end user. Several claims are specified in OpenID Connect, such as 

the issuer identifier (iss)  which is a kind of URL with the scheme, host and port number, the subject 

identifier that is unique and with local context for the end user (sub), the audience (aud) which defines 

to whom the ID token is suited to, it corresponds to the OAuth client_id. 

The trust relation of the user with a certain service, does not consider the environment, device where 

the access to a specific service is performed, as described earlier. To overcome this issue AIDA 

introduces an extension to OpenID Connect – AIDA Context Information (ACI), in a standard fashion 

to assure interoperability with existing OpenID Connect implementations. 

 

c) Edge and Cloud Security 

 

The edge and cloud continuum is assured through the interaction between kubernetes platform and 

the kubedge, as documented in D2.1. Both Kubernetes and Kubeedge have been identified as being 

feasible solutions for edge-cloud continuum. The security is enabled in two different perspectives: 

control plane, and data plane, as documented in the following subsections. 

 

The edge-cloud continuum is assured by the EdgeCore (EdgeHub subcomponent) and CloudCore 

(CloudHub sub-component), respectively. The control plane of these components is secured - edge-

cloud security continuum through the following mechanisms: 

● HTTPS configured with TLS. 

● Token to employed for authentication between the cloud and edge 

 

Data plane security mainly relies on the communication between microservices that run at the edge 

and cloud sides (EdgeMesh, 2022).  EdgeMesh has the advantage of providing the benefits of service 

mesh, and can be configured at the Kubernetes side through the helm package system for 

kubernetes. 

 

 

d) Intrusion Detection 

Three approaches are being evaluated to enable detection of intrusions in scalable and elastic 

microservice-based systems. These approaches intend to enable intrusion detectors to deal with the 

presence of multiple service replicas, a common aspect of microservice-based systems. Current 

methodologies do not address security threats looming over a set of multiple replicas of a service. 

Instead, they tackle the issue focusing on each unit, thus requiring a higher number of active profiles. 
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Figure 14 - Overview of the proposed approaches for data processing for micro services intrusion detection. 

 

The approaches integrate with a typical anomaly-based intrusion detection methodology, as 

presented in Figure 15 that works on two main phases: the training phase, where the operational 

profiles are learned, and the detection phase, where events are analysed for intrusions. During the 

training phase, classifiers use benign information from the system to create its benign behavior 

profiles. These profiles are used during the detection phase to identify deviations from the normal 

behavior learned and raise alarms. 

The data processing approaches operate over the data collected and feed it to intrusion detection 

algorithms. Consequently, regardless of the number of active replicas, the profiles can continuously 

be used to detect security intrusions with effectiveness and assure uninterrupted security of service 

replicas. This ability removes the necessity for multiple training conditions to cover all the 

deployment scenarios faced during detection phase; thus, promoting reusability of profiles and 

generalization of the knowledge acquired. Variations in load and demand, and consequently auto-

scaling operations performed, do not impair the capacity of profiles to detect malicious events. 

 



 
 

30 

 
Figure 15 - Integration of our approaches with an anomaly-based intrusion detection methodology for microservice-based 

systems. 

e) Privacy Mechanisms 

SOTERIA is a system for distributed privacy-preserving machine learning, which leverages Apache 

Spark’s design and its MLlib APIs. 

 

Our solution was designed to avoid changing the architecture and processing flow of Apache Spark, 

keeping its scalability and fault tolerance properties. As depicted in Figure 16 by the gray boxes, a 

Spark cluster is composed of a Master and several Worker nodes. Before submitting ML tasks (e.g., 

machine learning training and inference operations) to the Spark cluster, the user must load its local 

datasets and models to a distributed storage backend supported by Apache Spark. 

 

 
Figure 16 - SOTERIA architecture and operations flow. Main components of Apache Spark vanilla are depicted in gray boxes, 
whilst dashed boxes represent the components inside enclaves and white boxes depict the new components implemented in 

SOTERIA. 
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After the data loading step, the user can then submit ML processing tasks to Spark’s client that is 

responsible for forwarding these tasks (scripts) to the Master node. Namely, tasks are submitted to 

the Spark Driver component which generates a Spark Context allowing access to the resource 

manager and then distributing the tasks to a set of Worker nodes according to its needs. Therefore, 

the Spark Driver must have direct access to the computations, processing logic, or ML task scripts, 

before delegating the tasks to the Workers to optimize resources’ usage.  

 

f) Data Privacy 

The lack of a standardized manner of quantifying privacy as well as the limitations of the existing 

frameworks conduct us to develop a novel privacy framework to enable the implementation and 

evaluation of diverse anonymization methods suitable for the project requirements. 

 

The main objective is to develop an extendable privacy framework that allows to test configurations, 

apply Privacy-Preserving Mechanisms (PPMs) and assess mechanisms according to the achieved 

privacy and utility level of data. To do so, the privacy framework will be proposed and available as an 

open-source Python package, similarly to other well-known scientific toolkits (e.g. scikit-learn and 

scikit-mobility). Based on the state-of-the-art analysis, quantifying privacy commonly follows a 

pipeline composed by the steps: input data, PPM, attack, metric, and output data (c.f.Figure 17). 

Since the schedules presented in Figure 17 are merely representative, Figure 18 presents a real world 

experimental methodology, following the same pipeline concept (i.e. input data, PPM, attack, and 

output data). Concerning the input data, beyond reading, data might need to be processed, as 

observed in the followed methodology. From Figure 18 , we can also highlight the fact that three 

PPMs were applied, which implies testing and configuring three different mechanisms. 

Systematizing this process constitutes one of the motivations of proposing a privacy framework. 

 

       
 

(a) A simple schedule (with intermediary output 
after LPPM) 

(b) A simple branching schedule 
 

 

 

 

 

Figure 17 - Examples of schedules from Quick Start Guide (Shokri et al., 2012). 
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Figure 18 - Scheme of a methodology from (Cunha et al., 2019). 

Figure 19 presents a schematic of the privacy framework components, where each subpackage 

represents a step of the pipeline. Each subpackage contains the corresponding adapter, which is an 

abstract class that can be extended by implementing the abstract methods (i.e. relevant methods for 

the component). These adapters make the framework easily extendable, by allowing the 

implementation of new features (e.g. new PPMs or metrics). The subpackages presented in Figure 19 

can be briefly described as follows. The data subpackage is responsible for handling a data type by 

providing methods for specific tasks such as the ones represented a grey in the figure: read data, 

process data, filter data, and visualize data. For adding new data types, it is just needed to create a 

new class that extends from the Data Adapter and implement the respective functions, being 

possible to add new functions to handle the new data type. The remaining subpackages are designed 

in the same way. Thus, for adding a new PPM, attack or metric, we just need to extend the 

correspondent adapter and implement it according to the desired methods/requirements. 

 

Considering location data as a use case, the designed privacy framework will include 

implementations of appropriate PPMs, attacks, and metrics in this context. The features already 

implemented are represented in the scheme of Figure 19. For instance, Geo-indistinguishability (Geo-

ind), Adaptive Geo-ind, and Clustering Geo-ind constitute the PPMs that are already implemented 

and available in the privacy framework. By providing these implementations, we are not only 

systematizing the concept of quantifying privacy, but also promoting it from a practical point of view 

and motivating for an important scientific principle: reproducibility. 

 

As aforementioned, one of the major concerns when designing the privacy framework is its 

extendibility, such that it can support heterogeneous data types, as well as different types of PPMs, 

attacks, and metrics. Taking the goals of the AIDA project in mind, we will be able to consider PPMs 

suitable for the needs of the project, by implementing PPMs, metrics and attacks thereof. After 

making the Python package publicly available, we intend to make the privacy framework accessible 

through a Progressive Web App (PWA), that is, a web application that can be used both online or 

offline to perform experiments and analysis over data. 
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Figure 19 - Scheme of the privacy framework components. 

 

 

g) Monitoring and Actuation 

As part of the self-adaptation process of microservice-based systems, two important activities are 

needed: 1) monitor the systems and 2) act on the systems to achieve a predefined quality standard. 

These are the two interaction points of the adaptation control loop (IBM, 2005) needed to promote 

self-adaptation abilities in the managed system. Two common approaches to promote self-

adaptation in a managed system: through an external layer of control or by adding self-adaptation 

mechanisms directly to the managed system itself (Salehie, 2009). The approach that will be used in 

AIDA promotes self-adaptation through an external management layer to separate the concerns of 

the business logic and self-adaptation abilities from the steady-state functioning of the system, 

which in turn support reasoning about the quality and generality of adaptation mechanisms and also 

reuse across systems (Garlan, 2004). 

 

In the context of AIDA Orchestration and Management, the TMA framework (http://tma.dei.uc.pt) 

will be used. TMA is the Trustworthiness Monitoring and Adaptation framework, which has a 

microservice architecture and can be deployed in a Kubernetes cluster. It uses an external component 

to promote self-adaptation in the managed systems (Pereira, 2020). Figure 20 shows its architecture. 
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Figure 20 - TMA architecture and the managed system being monitored and adapted by TMA (adapted from Metrics Project). 

TMA is based on the MAPE-K adaptation control loop created by IBM (IBM, 2005). MAPE-K stands 

for Monitor, Analyze, Plan, Execute, and Knowledge and they represent activities of the feedback 

control loop. TMA provides a component for each one of these activities. Monitor provides a REST 

interface to receive the data of the managed system. All the data is received by the Monitor 

component, and all the information needed by TMA is stored in a database through the Knowledge 

component. Analyze is responsible for reasoning over the data and creating metrics/indicators from 

the collected measurements. The Plan component comes up with an adaptation plan if an adaptation 

is needed (e.g., the CPU usage exceeds a threshold). Finally, the Execute component receives the 

plan and executes it by invoking operations to promote changes in the managed system. 

 

For further analysis, this was investigated in Activity 4 where was described in deliverables D4.1 and 

D4.2. 

 

 

● 2.6 External validations 
External validations are necessary so we have additional inputs to the framework requirements and 

execution. A 5G lab was identified partnering with a telecom operator, this will give the pilot a testing 

environment that will be similar to a real telecom network. 

 

3. Integration plan 
 

● Project Activities - Gantt 
 

Activity 1: Requirements and Design analysis 
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 T1.1 - Definition and Analysis of requirements for the Pilot execution 

 T1.2 - Solution design validation 

Activity 2: Solution components implementation 

 T2.1 - Implement Monitoring on edge architecture 

 T2.2 - Implement Federated Machine learning framework on edge architecture 

 T2.3 - Create solution deployment scripts 

 T2.4 - Develop identified Use cases Machine Models 

 

Activity 3: Solution Deployment 

 T3.1 - Deploy components architecture 

 T3.2 - Security controls/components deployment 

 T3.3 - Solution dry run deployment 

 T3.4 - Local and Cloud deployment of the pilot 

 

Activity 4: Test and Validate solution 

 T4.1 - Specification and test execution to identify defects 

 T4.2 - Solution components test and validation 

 T4.3 - Evaluate prediction performance on real data 

 

 
Figure 21 - Project Activities Gantt 

 

 

4. Validation and Quality Assurance 
 

Quality assurance (QA) testing is the process of ensuring that your product or service is of the highest 

possible quality for your customers. QA is simply the techniques used to prevent issues with your 

product or service and to ensure great user experience for your customers. 

In AIDA, the main features will use private and decentralized data, so quality assurance as an 

important role to guarantee that all the security mechanisms are correctly implemented. 
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Tests execution should be done in an appropriate environment gathering the analysis of the results 

obtained. 

In order to have the best tests results and have the best coverage of all the developed components is 

to test using a real fraud use case. Implement a way to detect a fraud in telecommunications known 

as International Revenue Share Fraud (IRSF), using Edge Computing and Machine Learning. One of 

the main objectives is to understand whether a certain telephone call is included in this type of fraud 

or not, and we intend to develop a solution capable of doing so with the following features: 

 In the telecommunications base station, the Edges of the solution, telephone calls occur 

between two (sometimes three, for example, in the case of forwarded calls) telephone 

numbers. Each of these calls gives rise to a record that contains a set of information related 

to the call, being of special interest to the solution the originating number, the destination 

number, the duration of the call and its cost. For privacy reasons, these records cannot be 

transmitted to systems external to the base station; 

 A classification (target column) is added to the telephone call records present at each Edge 

by an external labeling process; 

 It is intended that in each base station there is a system based on Machine Learning capable 

of learning to classify telephone calls as fraudulent or not, based on the classification 

obtained by the labeling process; 

 After learning, it is intended that in each base station, there is a system based on Machine 

Learning, capable of detecting if a telephone call is fraudulent or not, namely if it is an IRSF 

fraud, using the trained models; 

 It is intended that there is a transmission of knowledge between Edges, of what was learned 

by each Edge Machine Learning model on IRSF. 

Based on these assumptions, an IRSF fraud detection system was designed based on Machine 

Learning and federated learning. Federated learning unifies several Machine Learning models, 

without needing to know the records that trained each of the individual models, thus allowing to 

respect the privacy requirement that exists in this project. 

 

The main focus will be to guarantee that the components are used, the results provided are correct 

and have a secure communication. 

A full strategy of how security and privacy will be enforced in the platform, communications and data 

is detailed in deliverable D4.1 and D4.2. It’s advisable to read chapter 2 related with secure 

communication and Edge-cloud security described in deliverable D4.2. 

 

One of the most underrated aspects of creating your Machine Learning Model is thorough validation. 

Using proper validation techniques helps you understand your model, but most importantly, 

estimate an unbiased generalization performance. 

The content fraud use case will be validated using ground truth, checking the results of machine 

learning for accuracy against the real world, since this is implicit in datasources. 
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Figure 22 - Datasource feeds for machine learning models validation 

 

Successful implementation of validations will identify Feed #1 is equal to Feed #2, Feed #4 is equal 

to Feed #5 with a high assertive level (>=90%) and with enough interval distance from the non-related 

Feeds. 5 minutes of traffic should be enough to validate the feeds content and return an evaluation. 

 

When compared with existent algorithms for telecom fraud detection Gen2Out outperforms them in 

detection assertivity, speed and scalability. This will be supported by datasets with classified data. 

 

It’s advisable to read deliverable D3.1 related with machine learning detection algorithms for fraud 

uses case. 

A framework is a set of components working together. The main intention behind a framework is to 

facilitate (app or service) creation. Framework performance/benchmarking evaluation helps identify 

gaps in process, strategies, and techniques to achieve your goals. 

For further analysis, this was investigated in Activity 3 where was described in deliverable D3.1. 

 

 

 

 

 

 

5. Conclusions 
 

This document presents the security strategy along with the security and privacy requirements for 

the AIDA project. An extensive review of the state of the art is performed focusing on the main 

concerns of each task of the project and the relevant topics addressed in each one of them. This 
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review is based on the scope and security concerns of the AIDA platform taking into account the 

architecture and technologies adopted. The main threats are identified along with the stakeholders 

and main actors, so as to pinpoint the major attack venues. 

  

With the requirements identified the platform will comply and have assurance of its ability to operate 

securely and maintain the privacy of the customers and their data during the operation. Focusing on 

topics such as the secure communication between AIDA components that can be distributed 

throughout the edge or the cloud, allows a secure exchange of data maintaining its integrity and 

privacy. Further, the pilot also covers the detection of fraud using a well know type of fraud With 

regard to data privacy, it is expected to provide a privacy-preserving framework for machine learning 

workloads as the information can be processed in potentially untrusted environments and also 

contribute with a framework for preserving the privacy of heterogeneous data types, given the nature 

of the environments analyzed by the AIDA platform.  

 


