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 Scope 

 The purpose of this document is to provide a preliminary overview of the 5G 
technology and its impacts in terms of fraud risks, ensuring that addresses all relevant 
areas of focus which will drive the requirements for a platform that is able to identify 
and prevent fraud in 5G Non Standalone and Standalone networks. 

 Unlike previous evolutions, 5G re-thinks and re-architects how the network is built 
and managed, by introducing emerging use cases and business models, affecting 
not only consumers but also enterprises and industries. The capabilities to support 
the divergent use cases proposed in 5G, can only be accomplished in a flexible and 
efficient architecture with the agility of modular network functions which can be 
quickly deployed and scaled on demand in a cost effective way, a paradigm which 
can only be achieved using containers in cloud native (CN) environment in order to 
create a cloud ready mobile core (MC). In this context, Software Defined Networking 
(SDN) and Network Function Virtualization (NFV), are the key enablers to achieve 
the cloudification of the 5G core (5GC) network, two core cloud native principles 
leverage by the European Telecommunications Standards Institute (ETSI), 
introducing a Service Based Architecture (SBA) as well as Cloud Native Network 
Function (CNF) in the reference NFV architecture. Moreover, 5G core is decomposed 
into Network Functions and Network Services exposed through Application Protocol 
Interfaces (API), providing the flexibility of breaking the existence functions into micro 
services, a design philosophy based on decomposition of business requirements into 
domains and each domain into services that fulfill the business requirements. The 
term micro is employed as a limitation for the functional scope being provided and 
not as scale or volume delimitation. By design, each micro service needs to be 
deployed individually, describing the interfaces and dependencies, conforming to the 
Representational State Transfer (REST) software architectural style. A RESTful web 
service, exposing a RESTful API that provides to its peers a constant endpoint for the 
service being provided. 

 Micro services in distinct containers provides not only scaling with much higher 
granularity, but also optimal tuning in terms of resource consumption. Yet, this brings 
an increase complexity when managing the infrastructure, requiring orchestration 
solutions to manage the life cycle management of Cloud Native Ecosystems and 
ensure reliable service-to-service connections that abstract the network lawyer, 
handles authorization, access control and quotas, and builds a zero trust environment 
based on service identity.  

 In the context of 5G, Fraud is an Application container integrated with the multiple 
network services and functions of the 5G Core and 5G RAN, deploying multiple micro 
services that report abnormal behavior.   

 The changes in 5G network will bring significant changes to fraud management, 
namely by introducing new attack vectors and type of stakeholders involved in fraud 
scenarios changing the current threat model. Specifically, the use of Artificial 
Intelligence (AI) to perpetrated fraud and avoid detection (Smart Fraud), massive 
expected increase in the number of connected devices and the new use cases which 
will expand 5G capabilities to new industries are the root drivers. It is key to address 
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these new anticipated challenges but also consider that existent fraud will be carried 
out using different enablers. In order to face the challenges in 5g Fraud, it is essential 
to have real time analysis using network signaling and real time feeds which can be 
analyzed by algorithms with high accuracy and learning capabilities, reducing the 
amount of false positives, a key aspect considering the volume of IoT devices with 
inconsistent patterns in the network. The majority of fraud occurs from a lack of 
security, hence collaboration and integration with security is key in order to prevent 
fraud. This integration occurs at different levels, from information sharing between 
industries and stakeholders to end to end monitoring controls. The risk for multi-
vector attacks in 5G is high, only integrated holistic views can reveal a potential fraud 
threat.  

 In the following chapters we will cover the main use cases and technologies that 
resumes the standard requirements expected to be address in a 5G fraud solution. 
This is not a static list and it’s expected to change as the implementations of 5G 
network progress. 

 5G Overview 

The next-generation of telecom networks (fifth generation or 5G) has started hitting 
the market at end of 2018 and will continue to expand worldwide. 

Beyond speed improvement, 5G is expected to unleash a massive IoT (Internet of 
Things) ecosystem where networks can serve communication needs for billions of 
connected devices, with the right trade-offs between speed, latency, and cost. 5G 
connectivity promises to break traditional paradigms of data delivery by providing 
network connectivity almost everywhere. 

5G technology is driven by 8 specification requirements [8]: 

• Up to 10Gbps data rate - > 10 to 100x speed improvement over 4G and 4.5G 
networks 

• 1-millisecond latency 

• 1000x bandwidth per unit area 

• Up to 100x number of connected devices per unit area (compared with 4G LTE) 

• 99.999% availability 

• 100% coverage 

• 90% reduction in network energy usage 
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• Up to 10-year battery life for low power IoT devices 

5G speed tops out at 10 gigabits per second (Gbps), 10 to x100 faster than 4G. The 
use of shorter frequencies (millimeter waves between 30GHz and 300GHz) for 5G 
networks is the basis for 5G high speeds. This high-band 5G spectrum provides the 
expected boost not only in speed but also in capacity, low latency, and quality. 
However, 5G download speed may differ widely by area. 

5G technology offers an extremely low latency rate, the delay between the sending 
and receiving of information. From 200 milliseconds for 4G, we go down to 1 
millisecond (1ms) with 5G. 

The main evolution compared with today’s 4G and 4.5G (LTE advanced) is that, 
beyond data speed improvements, new IoT and critical communication use cases will 
require a new level of improved performance that can only be catered to with 5G 
technology.  

5G vs. 4G also means at least a 100-fold increase in the number of devices 
connected. 5G must be able to support 1 million devices for 0.386 square miles or 1 
km2. 

Also, low power consumptions will allow connected objects to operate for months or 
years without the need for human assistance. 

Unlike current IoT services that make performance trade-offs to get the best from 
current wireless technologies (e.g. 3G, 4G, WiFi, Bluetooth), 5G networks will be 
designed to bring the level of performance needed for massive IoT. This will in theory 
enable a perceived entirely ubiquitous connected world. 

5G will support all communication needs from low power Local Area Network (LAN) 
– like home networks, such as Wide Area Networks (WAN), with the right 
latency/speed settings. 

5G is designed to allow simple virtual network configurations to better align network 
costs with application needs. 

As of November 2020, 146 mobile operators have launched commercial 5G services 
according to the Ericsson mobility report. The study forecasts 220m subscriptions by 
end of 2020 and reaching 3.5 billion subscriptions by 2026, making it the fastest 
generation ever to be rolled out on a global scale. 

5G is still a cellular broadband technology and is a network of networks. 

Today, security solutions are already a mix of security at the edge (device) and 
security at the core (network).  
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Several security frameworks may co-exist in the future, and 5G is likely to re-use 
existing solutions used today for 4G networks and the cloud (SEs, HSM, certification, 
Over-The-Air provisioning, and KMS). [9] 

Furthermore, based on the knowledge of the current situation it can be assumed that 
all possible intermediate state scenarios are likely to occur in some place or another 
during the implementation phase of 5G technology, especially also given the 
heterogeneous and non-linear nature of the distribution of this type of technology. 

Therefore, for the introduction of 5G, 3GPP has specified 5 possible configurations 
or ‘Options’ for connecting to an EPC or new 5G core network (6 if the current 4G 
system is included). 

 

Figure 1 - 3GPP defined options for 5G deployment. [9] 

The features that distinguish each Option are: 

• Use of Dual Connectivity; 
• Radio Access Technology acting as master node 
• Core Network used. 

The Options using Dual Connectivity are grouped together under the term “Non-
standalone” (NSA) to indicate that 5G radio access technology (NR) and LTE are 
used simultaneously to provide radio access. Options where only one radio access 
technology is in use are referred to as “Standalone” (SA). 



 

 8 

It is widely expected that mobile operators will initially deploy 5G using Option 3 
allowing the re-use of existing EPC Core functionality. Option 3 has been fully 
specified in an early drop of 3GPP Release 15. 

The other deployment Options already fully specified by 3GPP are Option 2 and 
Option 5, both standalone options differing in the type of radio access technology 
connected to the new mobile core network 5GC. These options were completed in 
June 2018 (ASN.1 in September 2018). 

In addition, 3GPP has finalized the two remaining Options, Option 4 and Option 7, 
completed in March 2019 (ASN.1 in June 2019). 

Operators have planned their network deployment strategies based on what is 
included in the 3GPP specifications, and therefore reduction of the support of these 
options after standardization is not feasible. 

Support for option 2 will be delivered with the initial industry support for standalone 
connectivity to the 5G Core. The aim of this paper is to provide the supplier ecosystem 
with a view of Operators’ requirements for the support the 5G Core connectivity 
options beyond option 2, i.e. options 4, 5 and 7. 

To support this GSMA conducted some initial interviews with 20 Operators (and 
Operator groups) who are planning to launch 5G in the next 2 years to understand 
which of the 5 Options they are considering for their deployment plans. The results of 
this initial survey clearly indicated the Operators have a strong requirement for the 
additional support of Options 4, 5 and 7. In addition Operators require that Option 2 
introduction is not delayed. 

2.1.1 5G Architecture (NFV, SDN, CDN) 

5G technology brings with it the need of a novel architecture built from the ground-up 
in order to accommodate the various use-cases described in more detail in 3.1.1. This 
is thus a challenging and demanding task, and one that is still in its initial steps. 

Unlike previous evolutions, 5G re-thinks and re-architects how the network is built 
and managed, by introducing emerging use cases and business models, affecting 
not only consumers but also enterprises and industries. The capabilities to support 
the divergent use cases proposed in 5G, can only be accomplished in a flexible and 
efficient architecture with the agility of modular network functions which can be quickly 
deployed and scaled on demand in a cost effective way, a paradigm which can only 
be achieved using containers in cloud native (CN) environment in order to create a 
cloud ready mobile core (MC). In this context, Software Defined Networking (SDN) 
and Network Function Virtualization (NFV) are the key enablers to achieve the 
cloudification of the 5G core (5GC) network. These two core cloud native principles 
are leveraged by the European Telecommunications Standards Institute (ETSI), 
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introducing a Service Based Architecture (SBA) as well as Cloud Native Network 
Function (CNF) in the reference NFV architecture. Moreover, 5G core is decomposed 
into Network Functions and Network Services exposed through Application Protocol 
Interfaces (API), providing the flexibility of breaking the existence functions into micro 
services, a design philosophy based on decomposition of business requirements into 
domains and each domain into services that fulfil the business requirements. The 
term micro is employed as a limitation for the functional scope being provided and 
not as scale or volume delimitation. By design, each micro service needs to be 
deployed individually, describing the interfaces and dependencies, conforming to the 
Representational State Transfer (REST) software architectural style. A RESTful web 
service, exposing a RESTful API that provides to its peers a constant endpoint for the 
service being provided.    

Micro services in distinct containers provide not only scaling with much higher 
granularity, but also optimal tuning in terms of resource consumption. Yet, this brings 
an increase complexity when managing the infrastructure, requiring orchestration 
solutions to manage the life cycle management of Cloud Native Ecosystems and 
ensure reliable service-to-service connections that abstract the network lawyer, 
handles authorization, access control and quotas, and builds a zero trust environment 
based on service identity.  

  

Figure 2. - 5G Architecture. There are many individual pieces involved in 5G 
technology. Above is a general scheme of the associated service architecture. 

Network functions virtualization (NFV) 

NFV is a way to virtualize network services, such as routers, firewalls, and load 
balancers, that have traditionally been run on proprietary hardware. These services 
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are packaged as virtual machines (VMs) on commodity hardware, which allows 
service providers to run their network on standard servers instead of proprietary ones. 

NFV decouples network functions from the hardware. Those network functions are 
called virtual network functions (VNFs). VNFs run in virtual machines on commercial 
off-the-shelf (COTS) hardware (typically x86 servers). NFV is used by software-
defined networks and allows for scaling of VMs to handle changes in data center 
traffic, theoretically simplifying network operation. 

The different functions — such as firewalls, traffic control, and virtual routing — are 
called virtual network functions (VNFs). NFV uses these virtualized networking 
components to support an infrastructure totally independent of hardware. The 
standard resources of compute, storage, and network functions can all be virtualized 
and placed on commercial off-the-shelf (COTS) hardware like x86 servers. Having 
virtualized resources means that VMs can be given portions of the resources 
available on the x86 server. That way, multiple VMs can run on a single server and 
scale to consume the remaining free resources. This also means that resources are 
less often sitting idle and data centers with virtualized infrastructure can be more 
effectively used. Within the data center and the outside networks, the data plane and 
control plane can also be virtualized with NFV. 

A typical NFV architecture consists of: 

- Virtualized network functions (VNFs) are software applications that deliver 
network functions such as file sharing, directory services, and IP configuration. 

- Network functions virtualization infrastructure (NFVi) consists of the 
infrastructure components—compute, storage, networking—on a platform to support 
software, such as a hypervisor like KVM or a container management platform, needed 
to run network apps. 

- Management, automation and network orchestration (MANO) provides the 
framework for managing NFV infrastructure and provisioning new VNFs. 

NFV removes the need to have dedicated hardware for each network function. NFV 
improves scalability and agility by allowing service providers to deliver new network 
services and applications on demand, without requiring additional hardware 
resources. 

Moreover, with NFV service, providers can run network functions on standard 
hardware instead of dedicated hardware. Also, because network functions are 
virtualized, multiple functions can be run on a single server. This means that less 
physical hardware is needed, which allows for resource consolidation that results in 
physical space, power, and overall cost reductions. NFV also gives providers the 
flexibility to run VNFs across different servers or move them around as needed when 
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demand changes. This flexibility lets service providers deliver services and apps 
faster. 

The NFV architecture proposed by the European Telecommunications Standards 
Institute (ETSI) is helping to define standards for NFV implementation. Each 
component of the architecture is based on these standards to promote better stability 
and interoperability. 

Software-defined networking (SDN) 

SDN separates network forwarding functions from network control functions with the 
goal of creating a network that is centrally manageable and programmable. NFV 
abstracts network functions from hardware. NFV supports SDN by providing the 
infrastructure on which SDN software can run. 

An SDN typically has an SDN controller, northbound application program interfaces 
(APIs), and southbound APIs. The controller allows network administrators to view 
the network and dictate behaviours and policies to the underlying infrastructure. 
Southbound APIs take information about the state of the network from that 
infrastructure and send it back to the controller, which is necessary to keep the 
network running smoothly. Applications and services use northbound APIs to 
communicate their resource needs to the controller. 

Content Delivery Network (CDN) 

A content delivery network (CDN) refers to a geographically distributed group of 
servers which work together to provide fast delivery of Internet content. 

A CDN allows for the quick transfer of assets needed for loading Internet content 
including HTML pages, javascript files, stylesheets, images, and videos. The 
popularity of CDN services continues to grow, and today the majority of web traffic is 
served through CDNs, including traffic from major sites like Facebook, Netflix, and 
Amazon. 

At its core, a CDN is a network of servers linked together with the goal of delivering 
content as quickly, cheaply, reliably, and securely as possible. In order to improve 
speed and connectivity, a CDN will place servers at the exchange points between 
different networks. 

These Internet exchange points (IXPs) are the primary locations where different 
Internet providers connect in order to provide each other access to traffic originating 
on their different networks. By having a connection to these high speed and highly 
interconnected locations, a CDN provider is able to reduce costs and transit times in 
high speed data delivery. 
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CDNs see a great opportunity to advance edge computing and application delivery 
capabilities to meet the needs of the new services enabled by URLLC, while tackling 
additional challenges in content routing, management, purging, and security. 

Overall, the definition of CDN will be significantly broadened in the 5G era; not only 
will the forms of the distributed content, applications and services be greatly 
expanded, the network structure, business model and the value chain relationship 
can also be very different from what they are today. 

Network Slicing 

Network Slicing consists in reserving some defined section of a Telecom Operator 
network – a Network Slice Instances (NSI) - to a given client, as established in a 
contractual agreement between the two agents. This allows a client to have its own 
exclusive network space, thus assuring the necessary network requirements for its 
service to work successfully according to connection demands. 

Network Slice Selection Function (NSSF) is a function is responsible for the 
management (including lifecycle) of NSIs. It derives network slice subnet related 
requirements from the network slice related requirements. NSMF communicates with 
the NSSMF and the CSMF. - The NSSF offers services to the Access and Mobility 
Management function (AMF) and NSSF in a different public land mobile network 
(PLMN) via the NSSF service based interface. 

MANO 

Management and orchestration (MANO) is a key element of the ETSI network 
functions virtualization (NFV) architecture. It is the ETSI-defined framework for the 
management and orchestration of all resources in a virtualized data center including 
compute, networking, storage, and virtual machine (VM) resources. The main focus 
of NFV MANO is to allow flexible on-boarding, sidestepping the chaos that can be 
associated with rapid spin-up of network components. 

MANO is an architectural framework that coordinates network resources for cloud-
based applications and the lifecycle management of virtual network functions (VNFs) 
and network services. As such, it is crucial for ensuring rapid, reliable NFV 
deployments at scale. MANO includes the following components: the NFV 
orchestrator (NFVO), the VNF manager (VNFM), and the virtual infrastructure 
manager (VIM). 

NFV MANO is broken up into three functional blocks: 

- NFV Orchestrator: Responsible for on boarding of new network services (NS) 
and virtual network function (VNF) packages; NS lifecycle management; global 
resource management; validation and authorization of network functions virtualization 
infrastructure (NFVI) resource requests. 
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- VNF Manager: Oversees lifecycle management of VNF instances; fills the 
coordination and adaptation role for configuration and event reporting between NFV 
infrastructure (NFVI) and Element/Network Management Systems. 

- Virtualized Infrastructure Manager (VIM): Controls and manages the NFVI 
compute, storage, and network resources. 

RAT 

A Radio Access Technology or (RAT) is the underlying physical connection method 
for a radio based communication network. Many modern mobile phones support 
several RATs in one device such as Bluetooth, Wi-Fi, and GSM, UMTS, LTE or 5G 
NR. 

5G Core 

The 5G Core is known as a Service-Based Architecture (SBA). At a high level, it 
consists of the User Plane, the Control Plane, and the Shared Data Layer Network 
Functions. This enables a more resilient core network (CN). 

OSS/BSS 

OSS/BSS refer to Operations Support System and Business Support System, 
respectively. The distinction emphasizes a separation of concerns between 
maintaining network operations and the business around which that network is built. 
Communications service providers support a broad range of services and functions 
with their OSS/BSS. BSS primarily consists of order capture, Customer Relationship 
Management and Telecommunications billing whereas OSS covers Order 
Management, Network Inventory Management and Network Operations. 

5G RAN 

In order for a cell phone to connect to a network or the internet, it connects first 
through a radio access network (RAN). A RAN provides radio access and assists to 
coordinate network resources across wireless devices. It utilizes radio transceivers 
to connect users to the cloud. Most base stations (aka transceivers) are primarily 
connected via fiber backhaul to the mobile core network. 

This evolution of RAN for 5G will have a huge impact on wireless technologies, 
including enabling Mobile Edge Computing (MEC) and network slicing. These RANs 
of the future will also contribute to the lower latency that makes 5G so powerful. 

MEC 

Multi-access Edge Computing (MEC) moves the computing of traffic and services 
from a centralized cloud to the edge of the network and closer to the customer. 
Instead of sending all data to a cloud for processing, the network edge analyses, 
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processes, and stores the data. Collecting and processing data closer to the customer 
reduces latency and brings real-time performance to high-bandwidth applications. 

MEC characteristics include: 

- Proximity 

- Ultra-low latency 

- High bandwidth 

- Virtualization 

MEC also offers cloud-computing capabilities and an IT service environment at the 
edge of the network, as it is typically implemented with data centers that are 
distributed at the edge. The MEC platform enables distributed edge computing by 
processing content at the edge using either a server or a CPE. 

 

2.1.2 Micro Services Architecture 

Container as a Service (CaaS) 

Containers as a service (CaaS) is a cloud service model that allows users to upload, 
organize, start, stop, scale and otherwise manage containers, applications and 
clusters. It enables these processes by using either a container-based virtualization, 
an application programming interface (API) or a web portal interface. CaaS helps 
users construct security-rich, scalable containerized applications through on-
premises data centers or the cloud. Containers and clusters are used as a service 
with this model and are deployed in the cloud or in onsite data centers. 

As already explained, containers are a form of virtualization at the operating-system 
level. Containers share the running instance of the operating system hosting them. 
OS-level features provide isolation between containers so that one container cannot 
affect other running containers. 

With CaaS, cloud providers offer a hosted container orchestration engine that is 
capable of running many containers, as well as maintaining the infrastructure among 
running containers. A couple of examples of this are Azure Kubernetes Service from 
Microsoft or Elastic Container Service from Amazon. CaaS offers cloud-based 
hosting independently of cloud provider. Containers provide a standard unit of 
software deployment therefore it is possible to deploy a container to a CaaS offering 
from provider A or from provider B. In either case, the containers are the same. 

A container is a package of software that includes all dependencies: code, runtime, 
configuration, and system libraries so that it can run on any host system. Containers 
are an executable unit of software in which application code is packaged, along with 
its libraries and dependencies, in common ways so that it can be run anywhere, 
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whether it be on desktop, traditional IT, or the cloud. CaaS enables software teams 
to rapidly deploy and scale containerized applications to high availability cloud 
infrastructures. CaaS differs from Platform as a Service (PaaS) since it relies on the 
use of containers. PaaS is concerned with explicit ‘language stack’ deployments like 
Ruby on Rails, or Node.js, whereas CaaS can deploy multiple stacks per container 

CaaS is essentially automated hosting and deployment of containerized software 
packages. Without CaaS, software development teams need to deploy, manage, and 
monitor the underlying infrastructure that containers run on. This infrastructure is a 
collection of cloud machines and network routing systems that requires dedicated 
DevOps resources to oversee and manage. 

Container runtimes offer configuration and virtualization of the operating system, 
allowing for advanced customization and control. Containers can be critical to the 
development of highly customized and specialized software. 

A container system’s primary goal is to avoid and ensure consistent behavior across 
underlying deployment environments. 

Containers and CaaS make it much easier to deploy and compose distributed 
systems or micro service architectures. During development, a set of containers can 
manage different responsibilities or different code language ecosystems. The 
network protocol relationship between containers can be defined and committed for 
deployment to other environments. The promise of CaaS is that these defined and 
committed container architectures can be quickly deployed to cloud hosting. 

Deploying containerized applications to a CaaS platform enables transparency into 
the performance of a system through tools like log aggregation and monitoring. CaaS 
also includes built in functionality for auto scaling and orchestration management. It 
enables teams to rapidly build high visibility and high availability distributed systems. 
In addition, CaaS increases team development velocity by enabling rapid 
deployments. Using containers insures a consistent deployment target while CaaS 
can lower engineering operating costs by reducing the DevOps resources needed to 
manage a deployment. 

There are benefits to moving to a container-based application deployment. 
Containers are built up from an immutable image. This means that developers and 
testers are using the same image that gets deployed to production, without the risk 
of problems that come from having multiple environments with out-of-sync 
configurations. And, as mentioned earlier, containers have become a standard unit 
for software deployment. The fact that there are multiple cloud providers offering 
CaaS is a testament to this fact. 

A CaaS offering brings a lot of advantages, including deployment standardization, 
provider independence, and improved monitoring. All of these can lead to faster and 
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higher-quality application deployments, facilitating the introduction of new features to 
the application. 

A model with broad application, CaaS helps developers streamline the process of 
constructing a fully scaled container and applications deployment. The model is a 
boon for IT departments, providing an enabled container deployment service that has 
governance control in a security-rich environment. The CaaS model helps enterprises 
simplify container management within their software-defined infrastructures. 

Similar to other cloud computing services, users can choose and only pay for the 
CaaS resources they want. Some CaaS resource examples are compute instances, 
scheduling capabilities and load balancing. 

An essential quality of CaaS technology is orchestration that automates key IT 
functions. Google Kubernetes and Docker Swarm are two examples of CaaS 
orchestration platforms. IBM, Amazon Web Services (AWS) and Google are a few 
examples of public cloud CaaS providers. 

Enterprise clients from all industries are seeing the benefits of CaaS and container 
technology. Using containers provides increased efficiency and gives these clients 
the ability to quickly deploy innovative solutions for application modernization and 
cloud native development with microservices. Containerization helps these clients 
release software faster and promotes portability between hybrid and multicloud 
environments, and reduce infrastructure, software licensing and operating costs. 

Containerization helps these release software faster and promotes portability 
between hybrid and multicloud environments, and reduce infrastructure, software 
licensing and operating costs. 

Kubernetes and container orchestration 

Kubernetes (K8s) is a container orchestration system for automating application 
deployment, management and scaling. Originally designed by Google and open 
sourced in 2014, Kubernetes is maintained by the CNCF. The Kubernetes website 
describes Kubernetes as a “portable, extensible open-source platform for managing 
containerized workloads and services that facilitates both declarative configuration 
and automation”. 

The three primary platforms that Kubernetes functions as includes: 

• Containers 
• Microservices 
• Portable Cloud 

A container-centric management environment, Kubernetes coordinates computing, 
networking and storage infrastructure for user workloads. Kubernetes includes the 
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same ease of use as a PaaS along with the malleability of IaaS and the portability 
across infrastructure providers. 

a. ETSI NFV architecture 

As a standard specification, ETSI focuses on high-level architecture, development 
guidelines, and interoperability enabled by open interfaces. Most of the specifications 
in ETSI Management and Network Orchestration Group Specification (MANO GS) 
continue serving the purpose when applying to the Cloud Native NFV. Nevertheless, 
augmentation is needed in some areas because of the differences between the VM 
based and Cloud Native solutions. [7] 

 

Figure 3 - ETSI MANO Cloud Network Function Orchestration Architecture. [13] 

Cloud Network Function MicroService (CNFMS) 

CNFMSs are the microservice containers from which a Cloud Network Function is 
composed. 

Cloud Network Function (CNF) 

CNFs are the network functions deployed in the cloud as microservices, usually in 
container format. 

Network Function Cloud Infrastructure (NFCI) 

NFCI provides the underline physical infrastructure for the network functions. This 
includes the hardware equipment for the computer, networking, storage, as well as 
the containerization layer on top of the hardware platform. CNFs are deployed on top 
of the NFCI. 

Cloud Infrastructure Manager (CIM) 
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CIM is responsible for controlling and managing the NFCI compute, storage and 
network resources, as well as scheduling the microservice containers in the cloud. It 
manages the lifecycle of the containers in the cloud. 

CIM also collects performance measurements in the infrastructure including container 
level and makes the data available for other functional blocks for monitoring 
purposes. 

Other responsibilities of CIM include virtual networking control and management, as 
well as the southbound integration with various network controllers to achieve the 
physical network control and management capabilities. 

Examples of the CIMs available in the market are Kubernetes, AWS ECS, and Docker 
Swarm. 

Cloud Network Function Manager (CNFM) 

CNFM focuses on the life cycle management of individual CNF instances. In the 
Cloud Native architecture, a CNF is usually composed of a set of containers that 
implement a network function. A CNF manager takes the responsibility of the 
management of the multiple container instances of the same network function. To 
control the lifecycle of the CNFs, CNFM works closely with CIM, which manages the 
lifecycle of the individual container of the CNF. 

CNFM also serves as an overall coordination and adaptation role for configuration 
and event reporting between the CIM and the EM systems of traditional operator 
architectures. 

NFV Orchestrator (NFVO) 

The NFVO continues serving the responsibility of on-boarding a new Network Service 
(NS) composed of multiple CNFs, CNF forwarding graph, Virtual Links, and, as an 
option, Physical Network Functions (PNFs). The orchestrator also controls the life 
cycle of the Network Service including instantiation, scale-in/out or up/down, 
performance measurements, event correlation and termination. Further key 
operational functions are global resource management, validation and authorization 
of NFCI resource request, as well as policy management of Network Service 
instances. 

Cloud Network Function Forwarding Graph (CNFFG) 

 

The CNFFG contains a list of CNFs and the virtual links among the CNFs and the 
physical endpoints. 
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Figure 4 - A pragmatic NFV Software Architecture in the Cloud Native 
Environment. [13] 

 

ETSI NFV architecture for Cloud Native environment contains the microservices for 
the NFV Management and Orchestration in both the design phase and the Runtime 
execution phase. The design phase generates the network services model to be 
deployed onto the target private or public cloud(s). The Runtime execution phase 
contains the microservices for the network service deployment, orchestration, 
lifecycle management, network control, monitoring, and analytics. Besides the 
functional services, there are a set of common infrastructure services for all the 
microservices containers in the Cloud Native architecture environment. 

2.1.3 ETSI Network Function Virtualization 

About ETSI 

The European Telecommunications Standards Institute (ETSI) is a European 
Standards Organization (ESO) in the telecoms industry. It is a recognized regional 
standards body dealing with telecommunications, broadcasting and other electronic 
communications networks and services. This includes supporting European 
regulations and legislation through the creation of Harmonised European Standards. 
Only standards developed by the three ESOs (CEN, CENELEC and ETSI) are 
recognized as European Standards (ENs). 

ETSI has been key in developing standards for information and communications 
technologies (ICT) in Europe. They took the lead on NFV in 2012, and subsequently 
created the Industry specification group (ISG) to provide a forum for the industry to 
collaborate on establishing the required standards and supporting the implementation 
of network virtualization. 
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About ETSI ISG NFV 

The ETSI Industry Specification Group for Network Functions Virtualization 
(ETSI ISG NFV) is a group charged with developing requirements and architecture 
for virtualization for various functions within telecoms networks. Founded in 
November 2012 by seven of the world's leading telecoms network operators, ETSI 
ISG NFV became the home of Network Functions Virtualization (NFV). [2] 

The ISG NFV community has evolved through several phases with its publications 
having moved from pre-standardization studies to detailed specifications. The early 
Proof of Concepts (PoCs) efforts have evolved and led to a series of interoperability 
events (NFV Plugtests). This large community is still working intensely to develop the 
required standards for NFV transformation incorporating latest technologies, as well 
as sharing their experiences of NFV implementation and testing in multi-vendor 
environments. 

Building the Software-based Network 

Telecoms networks are made up of an array of proprietary hardware devices. 
Launching a new service often means more devices, which means finding the space 
and power to accommodate those appliances. However, this has become 
increasingly difficult. Hardware-based devices now have shorter and shorter life 
cycles due to rapid innovation, making the return of investment lower and lower when 
deploying new services, as well as limiting innovation as the industry is driven toward 
network-centric solutions. Furthermore, modern telecoms networks contain an ever-
increasing variety of proprietary hardware. The launch of new services often demands 
network reconfiguration and on-site installation of new equipment which in turn 
requires additional floor space, power, and trained maintenance staff. 

In the digital world the innovation cycles accelerate and require greater flexibility and 
dynamism than hardware-based appliances allow. A hard-wired network with single 
functions boxes is tedious to maintain, slow to evolve, and prevent service providers 
from offering dynamic services. 

In the same way that applications are supported by dynamically configurable and fully 
automated cloud environments, virtualized network functions (VNFs) allow networks 
to be agile and capable to respond automatically to the needs of the traffic and 
services running over it. 

Network functions virtualization (NFV) focuses on addressing these problems. By 
evolving standard IT virtualization technology, NFV implements network functions 
into software so that it can run on a range of industry-standard server hardware and 
may easily be moved to various locations within the network as needed. With NFV, 
the necessity to install new equipment is eliminated. This results in lower CapEx and 
OpEx, shorter time-to-market deployment of network services, higher return on 
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investment, more flexibility to scale up or scale down, openness to the virtual device 
network, as well as more opportunity to test and deploy new services with lower risk. 

Another key enabling technology for this vision include SDN (Software Defined 
Networking). SDN and NFV are complementary but increasingly co-dependent. While 
the former provides the means to dynamically control the network and the 
provisioning of networks as a service, the latter offers the capability to manage and 
orchestrate the virtualization of resources for the provisioning of network functions 
and their composition into higher-layer network services. 

ISG NFV has developed over 100 different specifications and reports for the 
virtualization of network functions, with focus on the management and orchestration 
of virtualized resources. From an architectural point of view, NFV specifications 
describe and specify virtualization requirements, NFV architecture framework, 
functional components and their interfaces, as well as the protocols and the APIs for 
these interfaces. Another set of NFV specifications define the structure and format of 
deployment templates and how to package all artefacts which are used by the NFV 
management and orchestration framework. 

ISG NFV also studies VNF performance, reliability, and resiliency matters, analyzes 
the security challenges linked to virtualization (trust, attestation, regulation) and 
specifies associated requirements. In support for 5G deployments, the ISG NFV 
specifications include support for multi-site and multi-domain deployments, as well as 
network slicing. New virtualization technologies such as support for containerized 
VNFs and container infrastructure management are tackled in studies and on-going 
normative specifications work. In addition, The ISG NFV specifies requirements for 
hardware acceleration, multi-tenancy, autonomous networks, etc. 

The ETSI ISG NFV helps by setting requirements and architecture specifications for 
hardware and software infrastructure needed to make sure virtualized functions are 
maintained. ETSI ISG NFV also manages guidelines for developing network 
functions.  It routinely publishes its research findings to advance the industry’s use of 
NFV. 

a. Service Framework 

With NFV the software is able to run on generic hardware, which enables networks 
to become more flexible and agile, and to be run more cheaply. [1] Traditional 
networks are comprised of network functions that are statically connected in a 
particular way so they provide a desired overall function. Virtualization allows 
connecting the network functions using dynamic methods as well as just static ones. 
However, multiple touch points for management are required, resulting in a more 
complex architecture than that of traditional networks. Additionally, future network 
services could be very different to current ones, as they will be made up of both non-
virtualized and/or virtualized network functions. This will require legacy network 
domains to be able to operate in conjunction with NFV-based network domains. 
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In order for this to be possible, an architecture needed to be established that 
supported the virtualization of diverse sets of network functions, and encouraged the 
standardisation of NFV by addressing interoperability and enabling VNFs to be used 
in a way that is independent of the vendor supplying them. 

As part of their work on defining requirements for NFV, ETSI established the 
reference architectural framework for NFV. The scope of the framework does not 
include the aspects of network functions/infrastructure that are common to Physical 
and Virtualized Functions, such as the specifics of the network functions, the control 
of the physical network infrastructure, or packet flow and control of the E2E 
(exchange-to-exchange) network service. Instead it focuses on the changes likely to 
occur in networks due to the NFV process i.e. the new functional blocks and reference 
points resulting from the virtualization of the network. Figure 5 shows a high-level 
view of the NFV framework, as established by ETSI 

 

 

Figure 5.  High-level ETSI NFV framework. [11] 
 
 
ETSI identified three main working domains: 

1. Virtual Network Functions (VNFs) - these are individual functions of a network 
that have been virtualized, i.e., software implementations of network functions that 
can be deployed on a network functions virtualization infrastructure (NFVI). 
Possibilities are endless: firewalls, Evolved Packet Core, etc. 
2. NFV infrastructure (NFVI) - the infrastructure required to run the VNFs. This 
is made up of hardware resources (computing servers and network switches), and 
virtual resources (“abstractions” of the hardware on which the VNFs run, known as 
“virtual machines” (VMs). A virtualization layer (the “hypervisor”) exists to abstract 
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between the two. NFVI is the totality of all hardware and software components that 
build the environment where NFVs are deployed. The NFV infrastructure can span 
several locations. The network providing connectivity between these locations is 
considered as part of the NFV infrastructure. 
3. Network functions virtualization management and orchestration 
architectural framework (NFV-MANO Architectural Framework) - MANO is the 
framework for management and orchestration of all the resources in the NFV 
environment. It is where the management of resources in the infrastructure layer 
takes place and where resources are created and delegated, and allocation of VNFs 
is managed. MANO is the collection of all functional blocks, data repositories used by 
these blocks, and reference points and interfaces through which these functional 
blocks exchange information for the purpose of managing and orchestrating NFVI 
and VNFs. 

The building block for both the NFVI and the NFV-MANO is the NFV platform. In the 
NFVI role, it consists of both virtual and physical processing and storage resources, 
and virtualization software. In its NFV-MANO role it consists of VNF and NFVI 
managers and virtualization software operating on a hardware controller. The NFV 
platform implements carrier-grade features used to manage and monitor the platform 
components, recover from failures and provide effective security – all required for the 
public carrier network. 

Full Architectural Framework 

For each of the three higher-level working domains, ETSI established individual 
functional blocks that each have a specific role. These are shown in the full NFV 
reference architectural framework in Figure 6. It depicts both the functional blocks 
and the main reference points between these blocks (shown as solid lines linking the 
blocks together). The functionalities that are necessary for the virtualization and 
operation of a network are included in the framework, but it does not stipulate which 
functions should be virtualized, as this is down to the owner of the network to decide. 
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Figure 6 - ETSI NFV reference architectural framework. [11] 

Overall, defining the purpose of each functional block within the ETSI framework has 
played a key role in creating standards in virtualization, resulting in NFV solutions that 
are more homogenous and reusable and can take advantage of economies of scale. 
However there is still work to be done, and the architecture is continually being built 
upon as NFV continues to develop. 

i.Service Based Architecture (5G-PPP) 

5G-PPP 

The 5G Infrastructure Public Private Partnership (5G PPP) is a joint initiative between 
the European Commission and European ICT industry (ICT manufacturers, 
telecommunications operators, service providers, SMEs and researcher Institutions). 
The goal of 5G PPP is to deliver solutions, architectures, technologies and standards 
for the ubiquitous next generation communication infrastructures of the coming 
decade. The challenge for the 5G Public Private Partnership (5G PPP) is to secure 
Europe’s leadership in the particular areas where Europe is strong or where there is 
potential for creating new markets such as smart cities, e-health, intelligent transport, 
education or entertainment and media. The 5G PPP initiative will reinforce the 
European industry to successfully compete on global markets and open new 
innovation opportunities.  

Some key challenges identified so far for the 5G Infrastructure PPP include: 
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• Providing 1000 times higher wireless area capacity and more varied service 
capabilities compared to 2010 
• Saving up to 90% of energy per service provided. The main focus will be in 
mobile communication networks where the dominating energy consumption comes 
from the radio access network 
• Reducing the average service creation time cycle from 90 hours to 90 minutes 
• Creating a secure, reliable and dependable Internet with a “zero perceived” 
downtime for services provision 
• Facilitating very dense deployments of wireless communication links to connect 
over 7 trillion wireless devices serving over 7 billion people 
• Ensuring for everyone and everywhere the access to a wider panel of services 
and applications at lower cost 

Service Based Architecture 

At the core of most modern networks and services is typically a cloud- and 
virtualization-based platform. This is also the case for 5G networks. These platforms 
are programmable, and allow many different functions to be built, configured, 
connected, and deployed at the scale that is needed at the given time. One example 
of such a platform is OPNFV, an open source project supporting Network Function 
Virtualization. [4] 

But the demand for easily scalable systems that can be tailored for new situations 
does not stop at the platform. The ability to develop new functions easily, time-to-
market, and use of off-the-shelf technology also drive changes in the network 
functions themselves. The goal is to migrate from telecom-style protocol interfaces to 
web-based APIs. The 5G core network will thus be based on what is called a “Service-
Based Architecture” (SBA), centered around services that can register themselves 
and subscribe to other services. This enables a more flexible development of new 
services, as it becomes possible to connect to other components without introducing 
specific new interfaces. The new system architecture is specified in 3GPP technical 
specification 23.501. 

In addition, the use of APIs based on web-based technology makes development 
easy, as libraries, development tools, specification tools, code generators, security 
mechanisms and many other components are broadly available. Not to mention the 
broad experience many programmers have in using them. 

It was decided to employ the new web protocol, HTTP/2 from IETF, design interfaces 
according to the REpresentational State Transfer (REST) principle where possible, 
and use JavaScript Object Notation (JSON) as a data format and OpenAPI as the 
interface definition language. 

b. Service Oriented Architecture (SOA) 

SOA 
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Service-oriented architecture (SOA) is a style of software design where services are 
provided to the other components by application components, through a 
communication protocol over a network. A SOA service is a discrete unit of 
functionality that can be accessed remotely and acted upon and updated 
independently. SOA is also intended to be independent of vendors, products and 
technologies. [3] 

A service has four properties according to one of many definitions of SOA: 

• It logically represents a business activity with a specified outcome. 
• It is self-contained. 
• It is a black box for its consumers, meaning the consumer does not have to be 
aware of the service's inner workings. 
• It may consist of other underlying services. 

Different services can be used in conjunction to provide the functionality of a large 
software application, a principle SOA shares with modular programming. Service-
oriented architecture integrates distributed, separately maintained and deployed 
software components. It is enabled by technologies and standards that facilitate 
components' communication and cooperation over a network, especially over an IP 
network. 

SOA is related to the idea of an application programming interface (API), an interface 
or communication protocol between different parts of a computer program intended 
to simplify the implementation and maintenance of software. An API can be thought 
of as the service, and the SOA the architecture that allows the service to operate. 

Service-Oriented Architecture (SOA) is a style of software design where services are 
provided to the other components by application components, through a 
communication protocol over a network. Its principles are independent of vendors 
and other technologies. In service oriented architecture, a number of services 
communicate with each other, in one of two ways: through passing data or through 
two or more services coordinating an activity. This is just one definition of Service-
Oriented Architecture. 

Characteristics of Service-Oriented Architecture 

While the defining concepts of Service-Oriented Architecture vary from company to 
company, there are six key tenets that overarch the broad concept of Service-
Oriented Architecture. These core values include: 

• Business value 
• Strategic goals 
• Intrinsic inter-operability 
• Shared services 
• Flexibility 
• Evolutionary refinement 
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• Each of these core values can be seen on a continuum from older format 
distributed computing to Service-Oriented Architecture to cloud computing 
(something that is often seen as an offshoot of Service-Oriented Architecture). 
• Service-Oriented Architecture Patterns 
• Image for post 

There are three roles in each of the Service-Oriented Architecture building blocks: 
service provider; service broker, service registry, service repository; and service 
requester/consumer. 

The service provider works in conjunction with the service registry, debating the whys 
and hows of the services being offered, such as security, availability, what to charge, 
and more. This role also determines the service category and if there need to be any 
trading agreements. 

The service broker makes information regarding the service available to those 
requesting it. The scope of the broker is determined by whoever implements it. 

The service requester locates entries in the broker registry and then binds them to 
the service provider. They may or may not be able to access multiple services; that 
depends on the capability of the service requester. 

c. Service Based Interface (SBI) 

SBI is the term given to the API based communication that can take place between 
two VNFs (Virtualized Network Functions) within the 5G SBA (Service Based 
Architecture). A given VNF can utilise an API call over the SBI in order to invoke a 
particular service or service operation. 

Each Network Function service exposes its functionality through a Service Based 
Interface (SBI), which employs a well-defined REST interface using HTTP/2. To 
mitigate issues around TCP head-of-line (HOL) blocking, the Quick UDP Internet 
Connections (QUIC) protocol may be used in the future. 

2. ETSI NFV Reference Architecture for Cloud Native Environment 

Cloud Native is a new approach for developing and running applications in a 
virtualized cloud environment. The basis of this approach is to break down a 
monolithic application into small microservices and deploy them as containers in the 
cloud. One of the advantages of doing so is that applications can be tested in an 
iterative and distributed model, without taking applications offline. In the cloud world, 
large scale applications have been developed, tested, and deployed with more agility 
using this distributed model. [12] 

Since 2016, several large service providers have publicly embraced the move to a 
microservices architecture in the telco cloud. There have been announcements from 
major service providers to use containers to build out their network function 
virtualization infrastructure. Some key telecommunications equipment suppliers are 



 

 28 

using microservices to implement some of their software. Open-source initiatives are 
moving towards microservices and containers. In NFV space, there is a trend of 
moving from the virtual appliance based solutions to the cloud native approach, which 
is referred to as the Cloud Native NFV. 

The cornerstone principles of cloud native are: 

• Applications are “carved up” into smaller units called microservices. Application 
monoliths are replaced by a constellation of smaller, inter-connected microservices. 
• Containers house the microservices and provide a run-time environment. 
Containers dispense with VM overhead, and instead just package up the application 
code, binaries and dependencies. Containers share a guest and/or host OS/kernel. 
• Orchestration provides complete container lifecycle management including 
scheduling, placement, start/stop/re-start and visibility. Kubernetes is the cloud native 
orchestration platform. 
• In the Kubernetes environment, one or more containers are grouped into pods 
that run on physical or virtual hosts. A pod is the smallest unit of work managed by 
Kubernetes. A collection of hosts and pods managed by Kubernetes is referred to as 
a cluster. 
• In addition, cloud native embraces the notions of open source, 12-factor app, 
and devops CI/CD pipelines. 

These principles are encapsulated in the Cloud Native Compute Foundation (CNCF) 
definition: 

“using open source software stack to be containerized, where each part of the app is 
packaged in its own container, dynamically orchestrated so each part is actively 
scheduled and managed to optimize resource utilization, and microservices-oriented 
to increase the overall agility and maintainability of applications.” 

 

2.1.4 ETSI NFV Reference Architecture for Cloud Native Environment 

Cloud Native is a new approach for developing and running applications in a 
virtualized cloud environment. The basis of this approach is to break down a 
monolithic application into small microservices and deploy them as containers in the 
cloud. One of the advantages of doing so is that applications can be tested in an 
iterative and distributed model, without taking applications offline. In the cloud world, 
large scale applications have been developed, tested, and deployed with more agility 
using this distributed model. 

Since 2016, several large service providers have publicly embraced the move to a 
microservices architecture in the telco cloud. There have been announcements from 
major service providers to use containers to build out their network function 
virtualization infrastructure. Some key telecommunications equipment suppliers are 
using microservices to implement some of their software. Open-source initiatives are 
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moving towards microservices and containers. In NFV space, there is a trend of 
moving from the virtual appliance based solutions to the cloud native approach, which 
is referred to as the Cloud Native NFV. 

The cornerstone principles of cloud native are: 

• Applications are “carved up” into smaller units called microservices. Application 
monoliths are replaced by a constellation of smaller, inter-connected microservices. 
• Containers house the microservices and provide a run-time environment. 
Containers dispense with VM overhead, and instead just package up the application 
code, binaries and dependencies. Containers share a guest and/or host OS/kernel. 
• Orchestration provides complete container lifecycle management including 
scheduling, placement, start/stop/re-start and visibility. Kubernetes is the cloud native 
orchestration platform. 
• In the Kubernetes environment, one or more containers are grouped into pods 
that run on physical or virtual hosts. A pod is the smallest unit of work managed by 
Kubernetes. A collection of hosts and pods managed by Kubernetes is referred to as 
a cluster. 
• In addition, cloud native embraces the notions of open source, 12-factor app, 
and devops CI/CD pipelines. 

These principles are encapsulated in the Cloud Native Compute Foundation (CNCF) 
definition: 

“using open source software stack to be containerized, where each part of the app is 
packaged in its own container, dynamically orchestrated so each part is actively 
scheduled and managed to optimize resource utilization, and microservices-oriented 
to increase the overall agility and maintainability of applications.” 

 

2.1.5 Cloud Network Function (CNF) 

A cloud native network function (CNF) is a network function designed and 
implemented to run inside containers. CNFs inherit all cloud native architectural and 
operational principles including Kubernetes (K8s) lifecycle management, agility, 
resilience, and observability. A CNF implementation should strive to meet these 
requirements. [5] 

CNF capabilities can be embedded in application pods. A CNF is just another pod, 
albeit with specialized network functionality. CNFs are versatile and can be 
implemented with a single purpose in mind, an example being a load balancer. They 
can also be designed and built for programming and executing specific data plane 
functions. 

Some of the advantages of CNFs include: 

• Lifecycle management parity with application containers.  
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• Stateless Configuration. CNFs operate in pods. Pods are durable, but if 
something breaks or new functions are needed, then pods can be torn down and a 
new instance started up.  
• Smaller footprint vis-a-vis physical or virtual devices. This reduces resource 
consumption, with the potential savings allocated to applications and/or infrastructure 
expansion. 
• Rapid development, innovation and immutability.  
• Performance. CNF processing in user space, NIC hardware control, multi-core 
tuning and kernel bypass all contribute to maximum throughput and resource 
efficiency.  
• Agnostic to host environments. Bare-metal and VMs are the most common. 
Since VMs do not add value to CNFs, bare-metal could become the preferred host of 
choice. 
 
a. Best Practices  

CNFs receive at no cost all existing best practices bestowed to application pods. 
These include: development environments, toolchains, CI/CD, K8s orchestration and 
scheduling, 12-factor app, distributed management, logging and telemetry streaming. 

The dynamic nature of cloud native environments precludes centralized or stateful 
CNF configuration management. Instead, a stateless approach is employed where 
CNFs “watch” for and then process configuration updates stored in an external data 
store. Another lightweight option uses a service request to trigger a local gRPC call 
that pushes configuration state into the CNF data plane. 

CNF functions should run in user space where it is easier, faster and less risky to 
develop and deploy new features and innovations. There is no need to interact with 
the stable and mature Linux kernel used by other components in the environment. 

A cloud-native architecture has many benefits. The following sections capture the 
primary benefits and best practices for applying cloud-native principles to CNFs. 

Distributed microservices 

Microservices are componentized, reusable software modules enabling a number of 
benefits for the customer and the development organization. Microservices expose 
smaller discrete functions to an application through APIs. APIs are maintained and 
versioned and promote reuse of microservices in other applications.  

Lightweight footprint 

Containers are a way of virtualizing an application process or set of processes and 
are inherently lightweight because, unlike a virtual machine, the OS is shared across 
containers. Significant performance improvements can be realized when starting and 
upgrading containers during lifecycle operations. Containers may be deployed on 
bare metal with a basic Linux OS or can be deployed on virtual machines residing on 
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top of a hypervisor. Although some of the benefits of containers are limited when 
running on virtual machines, a majority of the instances do not require the virtual 
machine to be upgraded for lifecycle events. For example, upgrading the software 
containers in a lifecycle event do not require the virtual machines to be upgraded. 

Service discovery 

Service discovery is one of the primary components of the cloud-native stack and is 
used to provide a real-time service registry for all available services. The service 
registry enables new services to be dynamically orchestrated into an application. 
Services are automatically scaled and recovered via Kubernetes if a service becomes 
unavailable and the service must be restored. 

Lifecycle management 

One of the primary benefits of moving to containerized microservices is the ability to 
orchestrate the containers so that separate lifecycle management processes can be 
applied to each service. This allows for each service to be versioned and upgraded 
singularly as opposed to upgrading the entire application or virtual machine image. 
When upgrading an application, the container scheduler determines which individual 
services have changed and deploys only those specific services into the broader 
application. When the application is implemented with the appropriate level of state 
separation, this process allows for fully automated in-service upgrades and rollback 
of the containers that make up the application. 

State separation 

One of the most commonly agreed-on design patterns in cloud-native applications is 
a clean separation of stateful (also known as backing services) and stateless 
services. Application services containing functional logic (database, file system, or 
cache) should be separated from stateful services. For example, a service handling 
a create session request implements the logic for creating the session but stores the 
session information in a separate stateful service, which physically stores the session 
to memory or disk. This allows for the stateless application services to be 
autonomous, lightweight, upgradable, recoverable, and rapidly scalable. 

Stateful services are more challenging because of where and how the state is actually 
stored: for example, on the file system, in memory, or in a cloud storage file system. 
Stateful services must address the availability, consistency, and portability of state, 
which typically requires replication across one or more containers while making sure 
that consistency of the state is maintained. 

Availability and resiliency 

Cloud-native applications inherently provide support for high availability and 
resiliency through service discovery and load-balancing transactions across stateless 
application containers. In addition, because containers are lightweight, recovery 
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times are far less than when recovering a virtual machine, physical box, or application 
as a whole. This allows for faster and more granular ways of responding to failure 
events. 

High availability cannot be solved by container orchestration alone, and, in most 
cases, the application itself has resiliency requirements. Stateful services, such as a 
resilient database, require resiliency beyond the inherent features of a cloud-native 
architecture, which requires state synchronization and data integrity. Additionally, 
protocol services require specific failover and availability mechanisms defined at the 
protocol level. 

Operational benefits 

Fundamentally, containerized applications running on bare metal perform better than 
those running on virtual machines because there is not the overhead of a hypervisor. 
Because of the lightweight footprint of containers, the speed of instantiating or 
recovering services is optimized. Because virtual machine instantiation includes an 
underlying OS and disk resources, the provisioning process can take minutes, 
whereas a container instantiation can take seconds. When containers are deployed 
on top of virtual machines—for example, in a CNF architecture—and the hypervisor 
overhead is still present, there are still a number of operational benefits because 
containers have a separate lifecycle from virtual machines. For example, a software 
upgrade or recovery might not require the instantiation of a new virtual machine. 
Therefore, because containers are lightweight, the benefits of starting, recovering, 
and upgrading services are substantially faster. 

Scalability 

A containerized architecture enables the ability to scale each microservice 
independently. Each container is monitored based on KPI metrics, enabling the 
orchestration scheduler to scale/descale individual containers. As new containers are 
started up for scaling, they register themselves in the service discovery layer and are 
automatically orchestrated into the broader application. Load balancing is used to 
transparently add new container instances without affecting the containers that 
depend on that container. 

i.Design Characteristics 

An alliance of telcos and vendors launched the Common NFVi Telco Task Force 
(CNTT) for the purposes of simplifying NFV standards. The NFVi reference 
architecture is dependent on OpenStack as containers can run on an OpenStack 
infrastructure, and vice versa. [6] 

As described previously, NFV replaces network hardware appliances with software -
- including virtual network functions (VNFs) -- that runs on virtual machines (VMs) 
running on commodity hardware. Moreover, CNFs are like VNFs, but they run on 
lighter-weight containers, providing greater agility and ease of deployment compared 
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with VMs. That lightweight implementation is useful throughout the network, but 
particularly so for edge applications and 5G network slicing. 

As described previously, moving network functions to containers seems to be a 
logical step forward in the evolution of network architecture with Cloud-native Network 
Functions (CNFs) being the term coined for this technology. CNFs, network functions 
like routers or firewalls, moved inside Linux containers orchestrated by tools such as 
Kubernetes. This means that, in a sense, Kubernetes is managing network traffic. 
Thus, containers need support for high network throughput, security, isolation and 
other telco needs. 

In this approach, software is distributed as a container image and can be managed 
using container orchestration tools (e.g. Docker images in Kubernetes environment). 
Examples of CNFs include: 

• Dynamic Host Configuration Protocol (DHCP) service is using database (DB) 
service to keep the state in a DB layer 
• VPN as userspace software--secure tunnel between different clusters 
• Lightweight Directory Access Protocol (LDAP) service as a source of 
authorization/authentication for an application, and also for storing its data in a DB 
layer by using DB service 

Furthermore, microservices for control plane are used across a number of different 
applications. Microservice APIs are typically exposed over a RESTful interface or via 
a message bus, which allows each service to choose the best technology available 
for client operations. For example, Java can be used for a control-plane service, and 
Go can be used for data-plane services. This componentization allows open-source 
technologies to be more easily integrated into the application or swapped for different 
technologies as the application evolves. 

CNFs, when running inside telecommunications premises, form a private cloud, and 
the same public cloud principles can be effectively used. CNFs cover all branches of 
the service provider market, including cable, mobile, video, security, and network 
infrastructure. 

Virtualization and VNFs helped us in getting started in moving toward cloud-native 
applications. Virtualization offered software models with increased flexibility with 
hardware dependencies eliminated. However, there are limitations in that VNFs 
upgrades are slow, restarts take a long time, CLI is still the main interface, software 
was typically a lift and shift operation, hypervisors such as OpenStack were hard to 
install, there was little elasticity, and scaling was problematic. Cloud-native 
applications address these limitations. Cloud-native applications in general have 
these characteristics: 

• Developed using microservices architecture (that is, 12-factor apps) 
• Managed by Kubernetes-style orchestration 
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• Built-in microservice discovery mechanisms 
• Supports dynamic elasticity and scale 
• Resilient services 
• Improved feature velocity 
• Smaller footprint with fast restart 
• Continuous deployment and automation principles 
• Consistent lifecycle management across containers 
• Modern health and status telemetry 

Primary cloud-native constructs 

A cloud-native application utilizes a collection of tools that manage and simplify the 
orchestration of the services that make up the application. These services, each with 
its own lifecycle, are connected by APIs and are deployed as containers. These 
containers are orchestrated by a container scheduler, which manages where and 
when a container should be provisioned into an application and is responsible for 
lifecycle management. Cloud-native applications are designed to be portable to 
different deployment environments: for example, in a public, private, or hybrid cloud. 
Continuous delivery and DevOps are methods used to automate the process of 
building, validating, and deploying services into a production network. 

Microservices 

An architectural style that structures an application as a collection of loosely coupled 
services to implement business capabilities. Microservices are commonly deployed 
in containers and enable the continuous delivery and deployment of large, complex 
applications. Each microservice can be deployed, upgraded, scaled, and restarted 
independently of other services in the application as part of an automated system, 
enabling frequent updates to live applications without affecting end customers. 

Containers 

Containers are another form of virtualization, using Operating System (OS)–level 
virtualization. A single OS instance is dynamically divided among one or more 
isolated containers, each with a unique writable file system and resource quota. 
Containers can be deployed on both bare metal and virtual machines. Containers 
deployed on bare metal offer performance benefits to virtual machines by eliminating 
the hypervisor overhead. Although each microservice is commonly deployed in a 
separate container, multiple microservices may be deployed per container to address 
application and performance requirements, for example, when colocation of services 
logically simplifies the design or when services fork multiple processes in a container. 

Continuous delivery 

Makes an individual application change ready for release as soon as it is ready, 
without waiting for bundling with other changes into a release or an event such as a 
maintenance window. Continuous delivery makes releases easy and reliable, so 
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organizations can deliver frequently, at less risk, and with immediate feedback from 
end users. The way service providers consume software this frequently will 
revolutionize speed to market. Eventually, deployment becomes an integral part of 
the business process and enterprise competitiveness, taking advantage of canary 
and A/B testing in the real world rather than artificial labs. 

DevOps 

DevOps is the utilization of lean and agile techniques to combine development and 
operations into a single IT value stream. DevOps enables organizations to build, test, 
and release software more rapidly and iteratively by applying continuous integration 
and delivery. For example, DevOps enables the automation of deploying and 
validating a new software feature in an isolated production environment, which can 
then be rolled out more broadly into production after it has been proven. To fully 
realize DevOps, service providers must adopt cloud-native techniques, establish 
automated continuous integration, and deliver pipelines with its vendors. 

Container Networking Requirements 

One aspect of K8s networking involves inter-pod connectivity provided by the 
Kubernetes Container Network Interface (CNI) specification. There are multiple CNI 
network plugins for establishing different forms of virtual L2/L3 overlay networks 
between pods. CNI solutions are quite suitable for web traffic workloads. However, 
they are not ideal for enabling services that leverage VNF-like functionality, process 
compute-intensive traffic workloads, or exploit the agility and dynamics of cloud native 
environments. 

A new set of requirements emerge for augmenting basic container networking with 
VNF-like capabilities: NFs adapted for cloud native deployment and operations. This 
assumes a container (pod) form-factor under K8s orchestration control, or a 
control/management plane co-existing or compatible with K8s. The latter is useful if 
pods need to be wired up into a mesh or chained topology. 

2.1.6 Cloud Native Network Function (CNFM) 

Cloud Native Computing Foundation (CNCF), which is an open source software 
foundation under the umbrella of Linux Foundation (LF), defines Cloud Native as: 
Cloud Native technologies empower organizations to build and run scalable 
applications in modern, dynamic environments such as public, private, and hybrid 
clouds. Containers, service meshes, microservices, immutable infrastructure, and 
declarative Application Programming Interfaces (API) exemplify this approach. [7] 

CNCF provides structure and constraints for being Cloud Native, requiring that the 
applications being developed and architected use microservices methodologies to be 
deployed as Containers. Traditional applications when broken down into small, 
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reusable components are referred as “microservices.” To be properly classified as 
Cloud Native, microservices need to be “stateless” meaning there has to be 
separation of processing from the associated data and the storage of the data in 
Cloud. Dynamic Orchestration is another critical pillar of being Cloud Native. That’s 
where the CNCF-hosted Open Source container orchestrator “Kubernetes” plays a 
crucial role in actively scheduling and optimizing resource utilization while providing 
observability, resiliency and an immutable infrastructure 

 5G Fraud Landscape 

3.1.1 5G Use Cases  

There are three main use-cases associated with 5G. These are: 

1. Ultra-low latency (ultra-reliable low latency (URLLC)) 

2. Massive implementation (mIoT) 

3. Connection speed (enhanced Mobile Broadband (eMBB)) 

Ultra-low latency 

Ultra-low latency in a 5G scenario is considered to be a latency not greater than 1-
millisecond. This is a great improvement over previous standards (50-millisecond with 
4G). 

This is of special importance if we consider the ever increasing number of devices 
(IoT) which will be connected to a given network at any given time. Moreover, many 
features and functionalities of such devices require extreme low latencies in order to 
function properly. A good example are self-driving cars, for which delays in the update 
of traffic information can easily lead to tragic consequences. 

Massive implementation 

With the advent of the Internet of Things, one of the consequences of the current 
digital transformation era, it is expected that the number of devices with an Internet 
connection will continue to markedly rise within the next coming years. Eventually, 
we can expect that everything will be connected, everything will be a sensor: 
collecting, sharing, and importing information from the network and other devices. 
This means that everywhere there will be a Massive Implementation of new devices 
and technologies connected to the Network, which will create a lot of strain to Network 
providers to provide ubiquitous Internet access to all these devices and in a way that 
guarantees that all requirements are met, be them speed of connection, broadband 
width, or latency to name a few. 
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Connection speed 

As previously mentioned, 5G will allow for much higher connection speeds as its 
technological predecessors. It can be noted that 5G will aim to provide 20 times the 
peak data rate (speed). 

In terms of spectrum bands earmarked for deployment of 5G, they can be sub-divided 
in three macro categories: sub-1GHz, 1-6GHz and above 6GHz. Sub-1GHz bands 
are suitable to support IoT services and extend mobile broadband coverage from 
urban to suburban and rural areas. This is because the propagation properties of the 
signal at these frequencies enable 5G to create very large coverage areas and deep 
in-building penetration. The 1-6GHz bands offer a reasonable mixture of coverage 
and capacity for 5G services. There is a reasonable amount of existing mobile 
broadband spectrum identified with this range which could be used for initial 5G 
deployments. Spectrum bands above 6GHz provide significant capacity thanks to the 
very large bandwidth that can be allocated to mobile communications and thus enable 
enhanced mobile broadband applications. 

3.1.2 AI/ML Fraud Detection (Federated Edge Learning) 

A distributed approach is needed to address the real time and massive volumes of 
information expected in 5G, additionally privacy and regulation prevents some of the 
data to exit the edge where it was collected and be processed in a central cloud. 
Collaborative Machine learning addresses technical and lawful restrictions. Using 
federated learning, it is possible for an edge to download or update a model and 
process the data locally. The model trained locally can be sent to a central server 
where it will be calibrated and consolidated, improving the global model, which is sent 
back to edge devices. A major issue in distributed training is the limited 
communication bandwidth between contributing nodes or prohibitive communication 
cost in general. The system must employ methods for reducing the communication 
cost for distributed training, including techniques of communication delay and 
gradient sparsification as well as optimal weight update encoding. 

3.1.3 Fraud and Security Synergy 

The building blocks of 5G are based in virtualization, Edge Computing and Multi 
Access Edge Computing (MEC). There are several threats that fraudster can explore 
directly on the infrastructure, hence collaboration with the security area is essential 
to minimize it. A risk factor unique to virtual environments is the hypervisor, which is 
the software and/or firmware responsible for hosting and managing Virtual Machines 
(VMs). It provides a single point of access into the virtual environment for hackers 
and/or fraudsters to target and it represents a potential single point of failure. A 
misconfigured hypervisor can result in a single point of compromise of the security of 
all its hosted components. The compromise of a single point of access presents 
fraudsters with an opportunity to obtain vital information. The likelihood and potential 
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for these large-scale attacks vastly increases the need for these risks to be fully 
considered in fraud threat mapping activities. Edge computing is the performance of 
data processing and analytics operations on, or near, the devices that produce or 
consume that data. The data processing occurs at the “edge” of the cloud, rather than 
on central cloud servers, minimising the need for data transfers and optimising 
performance associated with the processing of large amounts of data. However, edge 
computing does involve some risks. It is anticipated there could be an increased risk 
of physical theft and direct attacks on interfaces due to the increased number of third 
parties in 5G, which will see more technology being placed in remote locations. 
Fraudsters can harvest data through unauthorised malicious third party applications. 
Several threats can be expected on the core network due to the 5G deployment 
models. As the equipment is (broadly) in the non-telco space, it is, from an MNO point 
of view, an untrusted environment where various security attacks could happen. 

3.1.4  5G Fraud Threat Model and Fraud Use Cases 

 The 5G use cases, together with technology enabling them are the key inputs for the 
5G Fraud Threat Model. According to the 5G Fraud Risks Guide FS39 from GSMA, 
“5G Fraud is perpetrated where a process, control or technical weakness, primarily 
relating to 5G network or service deployment, is intentionally exploited, resulting in a 
financial, other loss or damage”. 5G will bring significant changes in the fraud domain, 
at a high level, it is expected that those core changes are will be: 

§ The fraud types will be the same, yet new fraud methods/enablers will be used 
to accomplish them. Current systems will fail to detect new fraud enablers or variants 
that are dependent on 5G technologies. 
§ Fraud based on Artificial intelligence to simulate human behaviour or explore 
statistical blind spots avoiding detection, e.g.: low and slow increases.  
§ Massive increase in number of connected devices and consequently large 
volume of data with real time detection requirements will force fraud systems to be 
more based on prevention than detection. Cooperation with other areas like security 
and adoption of signalling as the main data source for fraud detection will be 
essential. 
§ Stakeholders and partners related to IoT and industries that are embracing the 
new 5G capabilities and use cases (healthcare, automotive, manufacturing, …)  will 
be part of the fraud management process requiring new identification methods, 
controls, monitoring and fraud risk management framework.  

 The attack surface, risk vectors and new stakeholders of the 5G network is 
considerably higher than the previous generations forcing MNO’s to review the 
current fraud threat mapping. In a network where all network elements are virtualized, 
exploring a virtual layer vulnerability can create a single point of failure and an 
opportunity to succeed for fraudulent activities. Additionally, in 5G networks, the data 
processing occurs at the “edge” of the cloud, rather than on central cloud servers, 
minimising the need for data transfers and optimising performance associated with 
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the processing of large amounts of data. However, edge computing does involve 
some risks. It is expected an increased risk of physical theft and direct attacks on 
interfaces due to the increased number of third parties in 5G. With several 
deployment models, 5GS technology is being placed in multiple remote locations 
outside the control of the MNOs. Several threats can be expected on the core network 
due to the 5G deployment models.  

  In a context of IoT solutions, Insecure Provision, Single Identity for subscription 
aggregation, device life cycle management together with unauthorized modification 
of device identities and exploitation of IoT devices weakness for billing fraud 
purposes, represent the higher risks to be addressed. With this landscape in mind, 
the following use cases for a 5G fraud solution were identified. 

§ Service Disruption Detection  
§ Platform Service Abuse  
§ OTT Service Abuse  
§ Platform Capacity Planning  
§ Customer Experience Segmentation  
§ OTT Services Retention  
§ Platform Services Retention  

A general overview for each of the identified use-cases is provided next.  

 Use Case 1 - Service Disruption Detection  

 A service disruption may have different causes, in particular when a CSP provides 
the platform and a partner provides the OTT services. Therefore it is important to 
monitor the overall system, to ensure the platform is working as expected, that the 
usage evolution is also under the expected parameters, and that no capacity planning 
will happen in the short term.  

Capacity, which in terms of platform means the availability to connect to the service, 
and the availability of the contracted bandwidth, latency and resilience.  

On the other hand it is important to monitor the availability and supply of the OTT 
service in accordance with the contracted parameters with the partner, especially in 
the event the service is not hosted in the CSP’s infrastructure. It is also important to 
ensure the interface points are working as expected (e.g. the credential validation 
interface).   

Use Case 2 - Platform Service Abuse  

An abusive usage of a service means that a CSP is not getting the value for the 
service being provided. It can occur due to different reasons, such as design 
problems in the offer, processes, or in the platform infrastructure, that supports the 
service. Regardless of the subscriber acting intentionally or not, it is key to detect 
these situations and act on them as soon as possible.  
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There is the concern that in a distributed platform like 5G EDGE this risk can be even 
higher than in traditional technological platforms. Moreover, as it is impossible to 
foresee all the scenarios, it is important to have a process that can monitor usage to 
detect this type of situations and alert the proper areas for them to act. In many 
situations, some pre-defined actions can be executed immediately to prevent losses 
or service disruption.  

Due to the distributed architecture we foresee a bigger challenge as the required data 
to detect these situations may reside only at the edge.  

Use Case 3 - OTT Service Abuse  

An improper or abusive usage of an OTT Service, even if a partner provides the 
service, is most likely to cause losses to both the CSP and the OTT Service provider. 
In addition, even if the OTT Service provider has controls for these types of situations 
there is information at the platform level that can allow detecting scenarios that are 
difficult or even impossible to detect by the OTT Service provider itself. It is therefore 
key to put in place controls at the CSP side that can monitor specific OTT Services 
for improper usage, either because someone is accessing the service without 
intention to pay or without having the service contracted, or because, due to a flaw in 
the process or supporting services architecture, platform subscribers are able to 
access the service in such a way they shouldn’t be able, or using it in an improper 
manner, like service reselling or redistribution, content extraction, etc.  

It is therefore crucial to have a monitoring service to prevent these type of situations.  

Use Case 4 - Platform Capacity Planning  

To ensure a proper service delivery it is important to have a solid, data driven and 
continuously updated capacity planning for the Platform Infrastructure. CSPs have 
different technologies (3G, 4G, 5G, 5G Edge) able to deliver OTT Services and need 
to have a clear view on the existing capacity in each of them, especially in a transition 
phase where these technologies should be used to serve subscribers, according with 
their contracted terms, devices, and the technological platform existing capacity. It 
does not make sense to migrate a subscriber to a 5G Edge platform if its device does 
not support it or if there is no capacity in his regional area. On the other hand, it does 
not make sense to keep a congested 4G platform if investments were already done 
and there is 5G capacity available in the region.  

It is therefore important to have a service in the Assurance Architecture that can 
collect data about the existing capacity in each of the existing technological platforms, 
as well as the corresponding levels and patterns of use. With this information, a 
capacity forecast should be continuously updated, with predicted or existing pain 
points adequately identified. A recommendation should be made on Subscribers and 
OTT services that are good candidates to be migrated to a different platform.  
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Use Case 5 - Customer Experience Segmentation  

A proper customer experience segmentation that can classify a subscriber according 
with his Service Experience - based on past behavior, usage and paying data - is key 
to manage Customer loyalty and prevent the risk of churn while measuring the 
satisfaction of the subscriber community served by a specific network segment or 
specific service.  

With an EDGE architecture we foresee the need to have “local” lightwheight 
segmentation algorithms that can group subscribers according with their past 
behavior, taking into account what is being done at the moment in order to be able to 
serve the subscribers the best way possible, including preparing the infrastructure 
capacity according with the split of segments in a particular location.  

It is important to bear in mind that sensible information may exist at the edge that 
does not exist in the centralized server, therefore the importance of a hybrid approach 
to determine the subscriber segment.  

Experience Segmentation estimates the overall experience level that the subscriber 
is having.  

Use Case 6 and 7 - OTT and platform Services Retention  

OTT Services Churn is the event of a subscriber stop using a particular OTT service. 
An example is a subscriber using Amazon Prime or Netflix canceling the service. 
There is also the particular case of abandoning the buying process in a pay per view 
service. There are many reasons behind such a decision and in many of them the 
event can be predicted, based on the usage pattern change, experience issues, etc.  

Knowing the event in advance allows retention measures to be taken. They can be 
point measures like reminding the subscriber he has some credits expiring, a task 
that can be fully automated, or a retention campaign involving a Customer service.  

Especially for the first type of situations it is key to be able to monitor in real time the 
content browsing behavior and the subscriber’s cart, in a similar way to any E-
Commerce service. This type of monitoring, especially if involving sensible 
information, should ideally be performed at the EDGE.  

In order to successfully cover these use-cases in the new RAID platform there are 
functional requirements that need to be met. Below we describe the requirements 
identified for the use-cases described before.  

3.1.5 5G Fraud Use Case Requirements 

Regarding the Use Cases presented in the previous section, several associated 
requirements have been identified so far. It should be noted that this is not a static 
list and shall evolve together with the development course of this project. 
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Use Case 1 - Service Disruption Detection 

For this use case there is the need for developing a service disruption detection that 
can work as a micro service and is able to monitor the overall health of both Platform 
and OTT Service ability to provide the service according with the contracted terms. 

Is also able to monitor usage patterns and identify anomalies or short term trends that 
can put at risk the availability to deliver the service. 

Additionally, there are several data sources required for addressing this use case: 

• Service usage data (mandatory) 
• Platform usage data (if available) 
• CRM data (if available) 

Use Case 2 - Platform Service Abuse  

Development of a service abuse detection at the platform level, that can work as a 
micro service and is able to monitor the monitor subscriber service connection and 
usage patterns, together with the service contract data, in order to detect situations 
of abnormal usage that don’t comply with the contracted service terms or have the 
risk to have the CSP incurring in financial or reputational losses. If such a case is 
detected, relevant data for the analysis should be collected and an alarm generated. 
Automated actions may be executed for certain scenarios. 

Data sources required: 

• Service usage data (mandatory) 
• Platform usage data (if available) 
• CRM data (if available) 
• Billing data (if available) 

Use Case 3 - OTT Service Abuse  

Development of an OTT service abuse detection, at the platform level, that can make 
use of an wealthier set of data not at the reach of the OTT Service provider, and that 
can work as a micro service in order to monitor the connections to the OTT service 
and usage patterns, together with the service contract data, and spot situations of 
abnormal service usage that don’t comply with the contracted service terms or have 
the risk to generate losses to either the CSP or the OTT Service provider. If such a 
case is detected, relevant data for the analysis should be collected and an alarm 
generated. Automated actions may be executed for certain scenarios. 

Data sources required: 

• Service usage data (mandatory) 
• Platform usage data (if available) 
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• CRM data (if available); Billing data (if available) 

Use Case 4 - Platform Capacity Planning  

Development of a capacity planning micro-service, able to collect and process the 
current capacity indicators for the different technological platform together with the 
usage pattern, for each site or regional area, and with that information, to forecast the 
capacity levels and the ability to cope with the predicted usage levels for those sites 
and regions. Base on this, it should be able to pinpoint problematic areas / 
technologies / services (if there is a latency problem, only some services are 
affected). It should also recommend subscribers and services to be migrated, or 
investment measures to be made to cope with the growing needs. 

Data sources required: 

• Service usage data (mandatory) 
• Platform usage data (if available) 
• CRM data (if available) 

Use Case 5 - Customer Experience Segmentation 

A ML based Customer Experience Segmentation approach, that is able to run 
centrally based on the heavy historical data but with the ability to be adjusted at the 
Edge with the local usage and infrastructure data stored at the EDGE. 

Data sources required: 

• Service usage data (mandatory) 
• Platform usage data (mandatory) 
• CRM data (if available) 
• Complaints data (if available) 

Use Case 6 and 7 - OTT and platform Services Retention  

Development of OTT Services Churn prediction models able to use relevant 
information stored in the central servers or stored at regional servers or even at the 
edge, where sensible data that can’t be moved to central location may reside, either 
in near real time or in batch. 

Models should be adaptive as much as possible to changing patterns, without or with 
minimal human intervention. 

Data sources required: 

• Service usage data (mandatory) 
• Platform usage data (if available) 
• CRM data (if available); Billing data (if available) 
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 5G Security and Fraud Architecture Overview 

4.1.1 High Level Service Architecture 
The end goal of MEC is to provide an optimized and low latency computing 
infrastructure with deployment agility that can scale horizontally or vertically based on 
requirements. With MEC we can move services and content closer to end-users and 
get more QoE, QoS while reducing backhaul congestion and optimizing gateway 
interconnectivity costs. MEC offers to developers and content providers the ability to 
run their applications that require high computational power and real time responses 
at edge of the network, while less demanding and non-real time response services 
can run on a central cloud. A first draft is provided in figure 7, where local edge 
connects to the multiple network layers, identify abnormal behaviours patterns based 
on model uploaded by a central service, and at the same time contributes with model 
training for federated learning and provides control and report capabilities.     
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Figure 7.  Adaptive, Intelligent and Distributed Adaptive Platform (AIDA) High 
Level Architecture Diagrams. [10] 

The scheme depicted in fig. 7 exhibits the edge-centric perspective around which this 
architecture is built upon. It displays the reliance upon edge computing, where a big 
part of the processes will be running. All this must be accomplished while ensuring a 
secure communication and data store privacy standards between the edges and the 
cloud. 

This distributed framework is orchestrated with full autonomy, scaling and adapting 
seamlessly to current needs, whilst providing live monitoring of the network in real 
time. Concurrently, the platform must be built with effective mechanisms for the 
detection of all sorts of intrusive challenges and constrains that might affect the 
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performance, security or reliability of the network, and to be able to efficiently address 
and overcome them with minor disruptions at the consumer end. 

 

Some implicit major contributes from this design are: 

• Analytics: Edge technology collects a significant amount of data from all its 
networks that cannot tolerate latency 

• Compliance: Compliance issues diverging from copyright enforcement to 
geographical data placement and GDPR 

• Security: Edge computing allows for applications such as DDOS and 
cybersecurity to prevent these types of attacks and moves the security perimeter 
closer to the source. 

• NFV: Network Functional Virtualization (NFV) access virtual network functions 
(VNFs) such as vRAN, C-RAN, vCMTS, vOLT need to run at the same location as 
edge computing. 

 Challenges and Issues 

 While the previous sections highlights the current best practices of Cloud Native 
applications to CNF (and for that matter VNF), it does not articulate the immaturity 
that this technology has with respect to its application in cellular networks. 
Additionally, Microservices architecture and 5G technology benefit each other, yet 
there are a few challenges: 

• The degree of orchestration that Microservices require is pretty high. This 
means that microservices need a lot of coordination and management. Therefore, 
decomposing an already existing system might be a little difficult. 
 
• The same goes for 5G. Reengineering an existing system for suiting a 5G 
environment can be challenging and time-consuming. 
 
• Even the microservices architecture, if not properly strategized, can create 
problems with latency resulting in poor performance of 5G applications and services. 
 

 Conclusions 

  The Adaptive, Intelligent and Distributed Assurance Platform, AIDA, project aims to 
deliver an end-to-end 5G-ready fraud management platform that is based on the 
latest advances in machine learning, edge computing, and hybrid cloud architectures 
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to protect networks for 5G and beyond. AIDA address 5G’s scalability and privacy 
challenges by enhancing RAID’s engines and expanding its automation capabilities. 
In particular, the project will be focusing on the following goals: 

• Leverage edge computing and 5G - to distribute RAID platform components to 
delegate processing to the edge or use central servers, according to the nature of the 
computation and the type and localization of monitoring and reference data. 

• Explore emergent federated machine learning techniques - to learn from local 
data and push incremental model updates to coordinator nodes that maintain global 
models based on the contribution of edge nodes and other relevant data sources. 

• Test resilience to intrusion or tampering - by requiring the research and 
application of intrusion detection techniques at multiple levels of the architecture, with 
the goal of enabling system-wide intrusion tolerance. 

• Protect data privacy and confidentiality – by maintaining the confidentiality of 
the operational data being monitored, analysed, and protecting the privacy of the 
entities to whom the data refers. 

In this document we provided an overview of the 5G Architecture which Raid will 
interface both at the core and radio access network as well as the infrastructure and 
technologies that Raid will use to detect 5G fraud.  

 An overview of the 5G fraud landscape was provided, yet this is not a final list, since 
5G implementation is in an early stage and most use cases that define them are yet 
to be live outside of proof of concepts, labs or pilot users. The amount of new 
stakeholders in the fraud landscape will bring new types of fraud that are difficult to 
identify now. The use of AI and abnormal behaviour algorithms addressing smart 
fraud and statistical blind spots are key to address unknown scenarios as well as the 
integration of data feeds that traditionally are not considered in fraud management 
systems. This is one of the reasons edge and multi access edge computing are 
mandatory. 5G massive machine-type communication (MMTC) supports the IoT use 
cases. Billions of devices introducing multiple new attack vectors threating the core 
network as well as end users. A central solution to deal with such volume would be 
impractical, in terms of data transfer as well as data processing. A micro service 
approach seems ideal to deploy the independence, fault isolation and scaling 
necessary to support the multiple fraud threats targeting 5G.    

  As future work, we will move to the conception of the algorithms that support the 
identified use cases running according to the principles highlighted in this document, 
and define an architecture that allows the implementation of the use cases. 
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