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Abstract—Memory Denial of Service (DoS) attacks are easy-
to-launch, hard to detect, and significantly impact their targets.
In memory DoS, the attacker targets the memory of his Virtual
Machine (VM) and, due to hardware isolation issues, the attack
affects the co-resident VMs. Theoretically, we can deploy VM
migration as Moving Target Defense (MTD) against memory
DoS. However, the current literature lacks empirical evidence
supporting this hypothesis. Moreover, there is a need to evaluate
how the VM migration timing impacts the potential MTD protec-
tion. This practical experience report presents an experiment on
VM migration-based MTD against memory DoS. We evaluate the
impact of memory DoS attacks in the context of two applications
running in co-hosted VMs: machine learning and OLTP. The
results highlight that the memory DoS attacks lead to more than
70% reduction in the applications’ performance. Nevertheless,
timely VM migrations can significantly mitigate the attack effects
in both considered applications.

Index Terms—Memory DoS, Moving Target Defense, VM
migration, Dynamic platform technique, Denial of Service

I. INTRODUCTION

Moving Target Defense (MTD) consists of dynamically
changing the available attack surface to thwart or defend
from attacks [1], [2]. In virtualized environments, Virtual
Machine (VM) migration appears among the most used MTD
strategies [3], being preferred among other MTD techniques
for several reasons, including i) VM migration is usually
a native feature of virtualized environments; ii) it does not
require expertise to deploy; iii) it is already a usual task of
the virtualized environment management.

VM migration consists of moving the VMs in the available
physical machines (PM) [4]. In the MTD context, VM mi-
gration is frequently applied to prevent malicious VMs from
affecting the co-resident VMs or the underlying PM [5], [6]
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(i.e., prevent host-based attack success). For example, it is
possible to use VM migration-based MTD to move benign
clients away from a compromised PM [7].

Specifically, on the threats with potential defense through
VM migration, we highlight the memory Denial of Service
(memory DoS). Leveraging on issues in the hardware mem-
ory isolation [8], the attacker can run an attack against the
memory of his own VM, trying to affect the co-resident VMs
availability by overloading memory.

One of the critical factors to deploy an effective MTD
against memory DoS is timing (i.e., when to apply MTD) [9].
In fact, in the context of VM migration against memory DoS,
the MTD timing is still an open problem. Previous research
tried to tackle this issue through stochastic modeling [10],
[11]. However, these works neglect empirical investigation of
VM migration-based MTD against memory DoS. Zhang et
al. [12] refers to VM migration as a potential defense for
memory DoS, but the authors use an alternative mitigation
method based on execution throttling.

This practical experience report aims to fill this research gap
through an experiment on VM migration-based MTD against
memory DoS. We intend to investigate the impact of different
scheduling of VM migration in the potential MTD protection.
The following research questions guide this research:

• RQ1: What is the impact of memory DoS in different
applications running on co-resident Virtual Machines?

• RQ2: Is Virtual Machine migration effective as Moving
Target Defense against memory DoS?

• RQ3: Does the Virtual Machine migration scheduling
policy play a significant role in the mitigation of memory
DoS effects?

The experimental approach is as follows. First, we set up
an environment with two VMs, ATTACKER VM and VICTIM
VM, running inside the same physical host. While the AT-
TACKER VM runs memory DoS attacks, the VICTIM VM runs
benign applications, namely, an online transaction processing
(OLTP) application benchmark and a machine learning (ML)
application. Then, as MTD, we migrate the ATTACKER VM
at different scheduling times, observing five-minute intervals.
Note that these five-minute intervals are selected arbitrarily to
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fit our experiment design. Here, we focus on understanding
the VM migration-based MTD effectiveness against memory
DoS instead of defining generic methods for selecting VM
migration intervals. Besides that, the search for the critical
threshold for VM migration is out of the scope of this paper.

Our results show that the memory DoS attacks performed
do not interfere in the ML application accuracy, and effects
are only noticeable in the ML time to fit metric1. In the ML
application scenario, the VM migration is enough to clear
the memory DoS effect). Regarding the OLTP application,
we notice that delayed migration leads to cumulative service
degradation. However, in all studied scenarios, the OLTP
application stayed alive during the attack (i.e., the attack is not
enough to crash the application). We present linear regression
curves to help characterize the VM migration-based MTD
protection in the context of this OLTP application.

This paper tries to fill a research gap by providing empir-
ical evidence of the VM migration-based MTD effectiveness
against memory DoS. We can highlight the following:

• Easy-to-reproduce experimental approach. We try to de-
scribe our methodology in detail to help researchers and
system managers to reproduce the experiment in their
environments. All the tools and source code are publicly
available.

• We investigate the impact of memory DoS attacks in two
different applications, namely OLTP and machine learn-
ing. From the investigation, we present a comprehensive
set of results providing evidence of the effectiveness of
VM migration-based MTD against memory DoS attacks.

• We consider the effects of an attack that is easy-to-launch,
challenging to detect, and causes substantial performance
degradation. Therefore, our study may help system man-
agers to handle this relevant security threat.

The remainder of this paper is organized as follows. Sec-
tion III presents the experiments. Section II presents the related
work. Section IV presents the results. Section V briefly dis-
cusses the specific memory DoS severity. Section VI presents
threats to validity and limitations of our work. Section VII
concludes the paper.

II. RELATED WORKS

Our previous works [10], [11] provide VM migration as
MTD evaluation based on modeling. These papers neglect ex-
perimental validation for the models. This practical experience
report extends these works by providing the needed empirical
background of VM migration as MTD.

The inspiring work of Zhang et al. [12] provided memory
DoS background (including the attack source code). Li et
al. [8] provided insights on the memory DoS attack detection.
Although both papers mentioned VM migration as a potential
defense for memory DoS, the authors followed different ap-
proaches from ours. Zhang et. al. [12] dealt with the problem

1The fitness function is the main task of our ML application. Indeed, the
time spent on other tasks is negligible. Thus, the time to fit is roughly the
ML processing time.

using execution throttling. Li et al [8] focused on the memory
DoS detection instead of MTD proposal.

Wang et al. [13] proposed a comprehensive framework
for defending against co-resident threats. Their framework
features a score calculation and attack-aware VM reallocation.
Likewise, Liang et al. [14] defensive approach consists of a
grouping-based VM placement strategy. In both papers, the
authors validated their approaches using CloudSim. Unlike
their works, we decided to deploy VM migration in a real
testbed. Besides that, instead of proposing a new framework,
our goal is to observe how the off-the-shelf VM migration
MTD scheduling may protect the considered applications.

III. EXPERIMENTAL APPROACH

Our main goal is to assess the impact of a memory DoS at-
tack on applications running in co-resident VMs. Besides that,
we aim to study whether different VM migration scheduling
policies effectively mitigate possible effects of memory DoS.

Figure 1 presents the experimental testbed, which includes
two physical machines: SOURCE NODE (Intel Xeon E5-
2620 2.00GHz + 16GB of RAM with Error Correction Code
enabled) - main host for the VICTIM VM and ATTACKER
VM; TARGET NODE (Intel Core i7-9700 3.00GHz + 16GB
of RAM) - host for the ATTACKER VM migration. Both
the ATTACKER VM and the VICTIM VM are Kernel Virtual
Machine (KVM)2 VMs with a homogeneous configuration:
single-core processor + 3 GB of RAM. The SOURCE NODE
and the TARGET NODE run Ubuntu Server 20.04.2 with kernel
5.4.0-72 and KVM 4.2.1.

Victim’s
VM

VM migration

Attacker’s

VM
Source Node Target Node

Application

Fig. 1. Testbed architecture

We consider two different applications running in the
VICTIM VM. The first consists of an ML application for
face recognition based on an example of scikit learn python
library3. We provide an example script for the ML application
automation in [15], which produces an output file with the
accuracy and time to fit metrics. The second is an OLTP
application based on the TPC-C4 benchmark [16]. Specifically,
we use the CockroachDB tool [17] for TPC-C benchmark
automation.

Regarding the specific attack running in the ATTACKER
VM, we follow the approach presented by Zhang et al. [12]. In

2https://www.linux-kvm.org/
3https://scikit-learn.org/stable/auto examples/applications/plot face

recognition.html
4http://www.tpc.org/tpcc/



practice, we use an infinite loop of unaligned atomic accesses
to the main memory of the VM. This attack load generates
LOCK signals in the memory, whose accumulation may result
in memory unavailability to handle benign processes. Hence-
forth in this paper, we refer to this attack as unalignAttk.

We performed sets of 30-minutes experiments, during which
the ATTACKER VM performs unalignAttk attacks and the
VICTIM VM runs the OLTP or the ML application. For
comparison purposes, we present results for three scenarios:
i) golden run - experiments without attacks and MTD; ii)
MTD - experiment adopting VM-migration as MTD against
unalignAttk; and iii) Only attack - considering the unalignAttk
impact while the MTD is off.

IV. CASE STUDIES

This section presents our two case studies. As mentioned
earlier, in these case studies, we consider two different appli-
cations running inside the VICTIM VM, namely a machine
learning application and an OLTP application benchmark
(TPC-C benchmark).

A. Machine Learning application

We divided the experiment with the ML application into
two steps. First, the attack severity experiment, focusing only
on investigating the impact of unalignAttk on the application
(i.e., system without MTD). Second, the MTD experiment,
where we apply VM migration scheduling as MTD. The
former aims to provide an answer to RQ1 (impact of memory
DoS in different applications running on co-resident Virtual
Machines), and the latter provides an answer for RQ2 (Virtual
Machine migration effective as Moving Target Defense against
memory DoS) and for RQ3 (role played by the Virtual machine
migration scheduling policy in the mitigation of memory DoS
effects).

The results (see Figures 2 and 3) include the golden run
(system without attack) and the unalignAttk (system under
attack). The X-axis corresponds to the experiment timeline.
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Fig. 2. ML - Accuracy results - attack severity experiment

Figure 2 shows that accuracy is close to 85% for all the
ML observations. In both curves (golden run and unalignAttk),
we notice the expected accuracy oscillations over time. These
results suggest that considering the scope of our experiments,

the unalignAttk does not interfere with the accuracy of the ML
application. Therefore, as long as the system is up, even in the
presence of an unalignAttk attack, the ML application results
accuracy stays roughly at the same levels of the golden run.
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Fig. 3. ML - Time to fit (seconds) results - attack severity experiment

Time to fit results in Figure 3 show how long the ML
application takes to process the face recognition. These results
highlight a substantial difference between the golden run
and the unalignAttk. Indeed, the ML application processing
under unalignAttk lasts about four times more than the golden
run. These results suggest that the unalignAttk impairs the
ML application performance substantially, reducing the overall
number of ML application runs in a given period. Although
the unalignAttk does not cause a catastrophic failure of ML
application, its impact may reflect in the application availabil-
ity. Depending on the Service Level Agreements (SLA) and
some threshold levels, the ML application may be considered
unavailable when it takes so long for processing.

In summary, we noticed that the major impact is indeed in
the performance and not in the ML accuracy. The unalignAttk
causes a 460% increase in the time to fit when compared
to the golden run. The number of ML runs in our 30-
minute experiment is of 54 in the golden run and 11 in the
unalignAttk, meaning a 80% reduction. Table I presents a
summary of ML application attack severity experiment.

The second step of this experiment is the MTD experiment,
in which we deploy three different schedules of VM migration,
namely at the 5th, 10th, and 15th minute of the experiment
time. In the same way as the attack severity experiment, we no-
ticed that among the regular oscillations, the accuracy results
for all the MTD scenarios also approach 85%. Nevertheless,
the time to fit results presents more interesting behavior as
shown in Figure 4.

These results suggest two conclusions. First, the VM mi-
gration MTD is effective to clear unalignAttk effects. Second,
delayed or premature VM migrations immediately recover the
ML application to the golden run levels. However, the longer
the attack continues, the worse is the performance impact.
Note that the ML application is a standalone application with-
out a timeout parameter. VM migration timing is crucial for
system availability in more complex client-server scenarios,



TABLE I
ATTACK SEVERITY RESULTS SUMMARY - MACHINE LEARNING APPLICATION

Experiment Number of runs avg. accuracy std. dev. accuracy avg. time to fit std. dev. time to fit
golden run 54 85.00% 0.0091 29.7702 0.18283
unalignAttk 11 85.29% 0.0058 137.18 1.31916

TABLE II
MTD RESULTS SUMMARY - MACHINE LEARNING APPLICATION

Experiment Number of runs avg. accuracy std. dev. accuracy avg. time to fit std. dev. time to fit
OnlyAttack 11 85.29% 0.0058 137.18 1.3192

MigAt5thMin 46 85.15% 0.0072 34.92 22.6595
MigAt10thMin 39 84.93% 0.0109 41.79 32.9165
MigAt15thMin 33 85.22% 0.0053 49.17 40.5078
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Fig. 4. ML - Time to fit (seconds) results - MTD experiment

as delayed VM migrations may allow the client to accumulate
server timeout, leading the client to give up the connection.

Table II presents a summary of the ML application MTD
experiment. The high standard deviation variance in the time
to fit MTD scenarios is due to the abrupt change in the time
to fit after VM migration.

B. TPC-C benchmark

Unlike the ML application experiment, where we collect the
metrics from every ML run, a 30-minute experiment run pro-
vides only a single result of the TPC-C benchmark. Therefore,
we need to run a set of 30-minutes TPC-C evaluations. The
following results are obtained from 30 runs of golden run and
30 runs of OnlyAttack (i.e., system without MTD). We run
15 experiments for the MTD results (three for each migration
schedule).

Here, we focus in two metrics: efc(%) - how close the
results are to the theoretical maximum TPC-C performance,
and avg (ms) - average time for transaction processing in
milliseconds. To these, we added two metrics: tpmC - TPC-
C specific metric to measure the business throughput (i.e.,
number of orders processed per minute), and ops - total
number of transactions processed.

In the TPC-C benchmark results, we merged all the sce-
narios into the same plot. This approach is helpful to notice
the degradation due to delayed migrations. Therefore, the
plots have golden run results at the origin, meaning the VM

migration at the 0th minute (i.e., system without attack), and
OnlyAttack results at 30th minute (i.e., system without MTD
as each experiment lasts 30 minutes). We perform experiments
with VM migration at the 5th, 10th, 15th, 20th, and 25th
minute of experiment time.

Figures 5 and 6 presents the results for avg (ms) and
efc(%), respectively. The plots include the error bars for each
scenarios and a linear regression curve. In both cases, the
linear regression curves R− squared5 is above 0.99.

127.78
3090.34 6863.10

8218.18

19223.17

33601.00
47348.67

y = -0.2365x4 + 15.154x3 - 246.01x2 + 1710.5x - 85.958
R² = 0.9972

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

60000.00 avg(ms)

Fig. 5. TPCc - avg (ms)

We notice the expected behavior of avg (ms) increasing and
efc decreasing when we have delayed MTD actions. Specif-
ically about our first research question related to memory
DoS impact (i.e., comparison between golden run and Only
Attack), the decrease in the efc is of 68.39%, while the increase
in the avg (ms) approach 370%. These results reveal the
service degradation rate due to memory DoS attack effects
accumulation.

The linear regression curves are particularly useful to esti-
mate avg (ms) and efc with other intervals for VM migration.
For illustration, we obtain that, to preserve efc above 75%,
VM migration should occur before 7.5 minutes, and to keep

5R− squared (R2) is a measure that corresponds to the proportion of the
variance explained by regression curve.



TABLE III
TPC-C BENCHMARK EXPERIMENT RESULTS

Experiment avg. tpmc std. dev. tpmc efc(%) std. dev. efc(%) avg (ms) std. dev. avg (ms) ops std. dev. ops
golden run 123.5 0.4814 96.00 0.0038 127.78 9.4855 8554 31.5369

MigAt5thMin 105.2 1.7688 81.81 1.3809 3090.34 597.9909 7281 102.9208
MigAt10thMin 91.5 1.0497 71.40 0.8155 6863.10 157.8724 6358 75.8650
MigAt15thMin 65.2 6.3168 50.68 4.8976 8218.18 4123.8594 4542 445.1576
MigAt20thMin 58.9 4.4500 45.77 3.4567 19223.17 1545.3677 4060 305.2223
MigAt25thMin 46.7 1.1518 36.30 0.9092 33601.00 983.7309 3273 75.5484

OnlyAttack 35.5 6.5807 27.61 5.1120 47348.67 8384.8285 2461 446.3500
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Fig. 6. TPCc - efc(%)

the avg (ms) below 15000, VM migration should occur before
the 18th minute.

Table III summarizes the TPC-C benchmark results. It
includes the results for the metrics and their standard deviation.
Specifically about tpmC, one of the metrics of interest in
the TPC-C benchmark, the reduction is 71.25% (comparison
between golden run and OnlyAttack).

V. SEVERITY OF UnalignAttk ATTACKS

In the previous section, we highlighted the unalignAttk
impact on the applications. However, it is crucial to investigate
whether the effect is only due to a manageable resource
overhead. The question (Q) is Isn’t the impact observed
already expected due to unalignAttk resource overhead?.

To answer Q, we propose an observation of unalignAttk
resources overhead and its comparison with benign workloads.
As we are dealing with memory, we set up a workload
based on the Linux memtest6. We also added the workloads
considered in the case studies, namely, TPC-C and Machine
learning (ML) applications. In practice, we observed the
SOURCE NODE resource consumption while hosting one VM
running the workload and one VM in idle state. The VM’s
configuration is the same used in the previous case studies. The
considered workloads are: golden run (i.e., two VMs in idle
state), unalign attack, memtest, TPC-C and machine learning
application (ML). The observation in all scenarios lasts 30

6https://linux.die.net/man/8/memtester

minutes. The results from the CPU and memory usage are
presented in Figures 7 and 8, respectively.
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We notice that, memtest requires more SOURCE NODE
resources than the unalignAttk. Presumably, considering only
the resource consumption, the possible impact of memtest in
the VICTIM VM should be higher than the unalignAttk impact.
To verify this, we run four one-hour experiments combining
the memtest and unalignAttk running in the ATTACKER VM
with the ML application and the TPC-C benchmark running
in the VICTIM VM. Table V and IV show the results.

The results highlight that the unalignAttk produces a higher
impact on the applications when compared to the memtest.
Actually, the memtest results are close to the golden run
results. While the memtest causes a reduction (when compared
to the golden run) of 22.2% in the TPC-C benchmark efc
metric, the unalignAttk produces a 79.1% reduction. About the
ML application, memtest reduces the number of runs in 7.5%,



TABLE IV
COMPARISON BETWEEN unalignAttk AND memtest - TPC-C METRICS

Attack tpmC efc avg (ms) ops(total)
golden run 124.4 96.7% 126.4 17202

memtest 95.9 74.5% 7385.3 13263
unalign 22.6 17.6% 82225.5 3131

TABLE V
COMPARISON BETWEEN unalignAttk AND memtest - ML METRICS

Attack Number of runs Avg. accuracy Avg. time to fit(s)
golden run 40 85.05% 29.87

memtest 37 85.10% 34.02
unalign 19 84.88% 125.26

while the unalignAttk reduction is of 52.5%. The results of
this experiment confirms the findings of [12] which highlights
memory DoS attack severity.

VI. THREATS TO VALIDITY AND LIMITATIONS

We identified two main threats to the validity of our results,
and they lie in our experiment design: 1) the observed results
are obtained from a small architecture; 2) limited observation
time in all the experiments. In the best scenario, we should
run more extended experiments in bigger datacenters. We are
aware of these limitations. However, below we provide some
explanations for mitigating these threats.

Threat 1) We manage to dedicate a small but powerful setup
for our experimentation. Note that the PMs have 16GB of
RAM with 6 and 8-core processors. To scale a representative
scenario, our VMs have only 3 GB of RAM each, with a
single-core processor. Therefore, there are plenty of idle PM
resources while running the VMs simultaneously, taking less
than 40% of the available resources.

Threat 2) Note that each experimentation does not involve
only the 30 minutes of the workload. We need to clean the
system for each run of the experiment, meaning generate
new VM images, complete PM OS reboot, export filesystem
for VM migration, and create new VMs. Besides that, all
the experiment runs are sequential, which means that it was
impossible to paralleling the experiment runs (as we have only
a single testbed).

VII. CONCLUSION

This paper presented a practical experience report of VM
migration scheduling as MTD against memory DoS attacks.
We evaluated the memory DoS attack severity and the MTD
effectiveness in different scenarios. Namely, we considered
memory DoS attacks against i) a machine learning application
and ii) the TPC-C benchmark. Our results show that the mem-
ory DoS attack causes a significant impact on the applications.
Besides that, results suggest that the VM migration-based
MTD effectively reduces the effect of memory DoS attacks
in both applications.

This work fills a research gap of lack of empirical evidence
of VM migration-based MTD effectiveness against memory
DoS. We are aware that the results are limited to our system

architecture. However, the adopted tools and source code
are publicly available. Thus, it is possible to reproduce the
proposed methodology in other scenarios. Hopefully, system
managers and researchers may find our approach useful to
support MTD experimentation and MTD policy design.

In the future, we aim to reproduce the experiments in a
bigger datacenter comprising other representative workloads as
client-server applications. Besides that, we intend to run more
extended experiments to notice possible error accumulation
after sequenced VM migration.
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